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We study the renormalization group flow in general quantum field theories with quenched disorder,
focusing on random quantum critical points. We show that in disorder-averaged correlation functions the
flow mixes local and nonlocal operators. This leads to a new critical exponent related to the disorder (as in
classical disorder). We show that the time coordinate is rescaled at each renormalization group step, leading
to anisotropic spacetime scaling at critical points. We write a universal formula for the dynamical scaling
exponent z for weak disorder.
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Introduction.—Quantum critical points appear in many
physical situations. These are scale-invariant continuous
field theories, that appear at long distances and zero
temperature upon fine-tuning some parameters, and that
control many features of the corresponding systems with
nearby parameters and with finite temperature [1–3].
Disorder is ubiquitous in condensed matter systems.

Some quantum critical points depend on the existence of
disorder, while others do not, and may (or may not) still
exist when disorder is present (see Chap. 21 of [2] and
references therein). We will discuss situations where the
disorder is quenched (nondynamical), so that it may be
viewed as a fixed background, varying in space, for the
physical system. One can then assume that there is some
probability distribution for the possible disorder configu-
rations, and compute averages of physical quantities over
the disorder. In some (“self-averaging”) cases these will
describe the typical behavior, while in other cases the
variances may be large.
In this paper, we discuss the renormalization group (RG)

flow of such systems. This is particularly interesting in the
vicinity of random critical points, where disorder-averaged
quantities have scaling properties that are captured by critical
exponents. We focus on general properties of these flows,
and not on specific applications. We discuss only zero
temperature properties, though the same methods should be
useful at finite temperature as well. We do not discuss
various instabilities related to long-range fluctuations of the
system, such as Griffiths-McCoy singularities [4–6], and it
would be interesting to include them in our analysis.
Critical exponents are related to properties of local

operators in the theory. We show that the RG evolution
of these operators in disorder-averaged correlation func-
tions is nonstandard. Operators which are nonlocal in time
evolve in an independent manner from the local operators,
and mix with them. This leads to new critical exponents
associated with the amount of disorder, analogous to the
crossover exponent ϕ in systems with classical disorder [7].

We also show that the RG flow rescales time relative to
space, leading at disordered quantum critical points to an
anisotropic spacetime scaling symmetry x → x=b, t →
t=bz [8–10]. We argue that the dynamical scaling exponent
z may be viewed as a (nonvanishing) beta function for a
specific coupling in the action of the disordered theory, and
may be computed perturbatively for weak disorder.
For some computations and for intuition we use the

replica approach to disordered field theories. Perturbatively
in the disorder this is just a technical trick for computing
disorder-averaged quantities. Beyond perturbation theory it
would be interesting to understand the implications of
replica symmetry breaking for our analysis. A more
detailed discussion of our assumptions and results may
be found in the companion paper [11].
The setup and the replica trick.—A particular realization

of disorder is described by a disorder field hðxÞ which
specifies the disorder configuration in the d-dimensional
space parametrized by x (e.g., the distribution of impurities,
or the strength of a background magnetic field). The
disorder modifies the microscopic interactions in the
system in an inhomogeneous manner. If the action of
the clean system without disorder is S0, in the presence of
disorder the action becomes

S ¼ S0 þ
Z

ddxdthðxÞO0ðx; tÞ; ð1Þ

where O0 stands for the leading interaction that disorder
couples to (e.g., the order parameter when disorder is a
background magnetic field). Euclidean signature is used in
this entire Letter (using analytic continuation from
Lorentzian). For simplicity, we assume that the disorder
has spin zero, and that the clean theory is a relativistic
critical system; the generalization to other situations is
straightforward.
The disorder manifestly breaks space translations and

spacetime rotations, but we assume that the probability
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distribution P½hðxÞ� to obtain a specific disorder configu-
ration is translationally and rotationally invariant. The
averages and all higher moments of observables are then
invariant under translations and space rotations, but full
relativistic invariance is not restored. Disorder averages are
denoted by X̄ ≡ R

DhP½h�X. We focus on short-ranged
disorder correlations, such that for long distance physics
the disorder range can be neglected, and the disorder at
different points is statistically independent, P½hðxÞ� ¼
exp ½− R

ddxp(hðxÞ)�. A commonly used distribution is
the Gaussian one, in which pðhÞ ¼ h2=ð2vÞ, normalized to
give unit sum over probabilities.
The replica trick presents quenched disorder-averages

using a limit of field theories without disorder. For the
disordered free energy we use the identity logðZÞ ¼
limn→0ð∂Zn=∂nÞ, where Z ¼ R

Dμe−S is the partition
function (Dμ stands for the path integral measure in the
theory). The replica theory is defined by

Z
DhP½h�Z½h�n ¼

Z Yn
A¼1

DμAe−Sreplica ; ð2Þ

having n copies of the original degrees of freedom.
Averaged correlation functions in the disordered theory
are then related to n → 0 limits of appropriate correlation
functions in the replica theory.
For the Gaussian distribution the replica theory is

Sreplica¼
Xn
A¼1

S0;A−
v
2

Xn
A;B¼1

Z
ddxdtdt0O0;Aðx;tÞO0;Bðx;t0Þ:

ð3Þ

As opposed to classical disordered systems, the quantum
replica theory is nonlocal in time, and therefore it is not
clear whether we can use RG methods. In addition, for
n ≠ 0 there are IR divergences. However, renormalization
group analysis is valid for n → 0 and in the disordered
theory, as suggested by the local Wilsonian RG [12].
Renormalization group flow with quenched disorder.—

In a clean field theory, the coupling constants λi run and
mix along the RG flow, and this is encoded in beta
functions βiðλjÞ. There is a one-to-one mapping between
coupling constants and local operators Oi, such that the
action includes λi

R
Oi, and the local operators also mix

with each other under the RG. At a fixed point βi ¼ 0, and
the derivatives of the beta functions encode the anomalous
dimensions of the local operators, which are related to
critical exponents.
A disordered theory is parameterized by the disorder

distribution P½h� in addition to the local couplings λi, and
for short-range disorder this is characterized by moments κi
which multiply different terms in p(hðxÞ). In a specific
realization of disorder, the couplings hðxÞ flow, and this

leads to a flow of the disorder distribution couplings κi. In
general, the flow generates disorder for all coupling
constants λi, with some general disorder distribution whose
parameters we will still denote by κi. Under the RG flow,
these parameters mix with the original uniform couplings
λi, to the extent that this is allowed by the symmetries, so
we have beta functions βλiðλj; κkÞ and βκiðλj; κkÞ. Disorder-
averaged correlation functions and thermodynamic quan-
tities depend on all these couplings, and all of their beta
functions have to vanish at disordered fixed points. Starting
from a clean theory, the most relevant deformation asso-
ciated with the disorder is the coupling v of (3), whose
dimension at the fixed point is dþ 2 − 2Δ0, where Δ0 is
the scaling dimension of O0 at the clean fixed point.
Assuming thatO0 is the lowest dimension operator allowed
by the global symmetries, we have ν ¼ 1=ðdþ 1 − Δ0Þ, so
the disorder is relevant whenever ν < 2=d (this is known as
the Harris criterion [13–15]).
In the next section, we show that disordered theories

have a special coupling constant related to rescalings of
time and to the emergence of anisotropic scaling in
spacetime. In the following section, we then discuss the
general mixing of operators in disorder-averaged theories,
and show that this leads to a new critical exponent.
The dynamical scaling exponent.—In this section, we

show that the dynamical scaling exponent z behaves like an
anomalous dimension of an operator—it runs along the
RG, and converges at a fixed point to the anomalous scaling
exponent. This is shown to be equivalent to a dynamical
rescaling of time. The discussion is general and applies also
to strongly coupled theories; in fact it holds in any system
(not only with disorder) breaking relativistic invariance.
Without disorder the same relation of the dynamical scaling
exponent to running RG couplings was discussed in [16],
with some additional assumptions that do not hold in
disordered systems.
Consider the replica action (3). Whenever t0 is close to t,

we are allowed to use the operator product expansion
(OPE), replacing the product O0 ×O0 by a series of local
operators. There is one particularly interesting operator
appearing universally in this OPE, which is the energy-
momentum tensor Tμν. Let x stand for the spacetime
coordinate. Around the clean critical theory, the coefficient
of this operator in the OPE is given by

O0;AðxÞO0;Bð0Þ ⊃
cOOTδAB

cT

xμxν

x2Δ0−dþ1
Tμν;Að0Þ; ð4Þ

where cT and cOOT are the coefficients in the two-point
function hTTi and the three-point function hO0O0Tμνi,
respectively [11]. Performing the integration over t0 in (3),
this leads to a UV cutoff-dependent term proportional toR
ddxdtT00;Aðx; tÞ, which is no other than the Hamiltonian

H integrated over time. Along the RG flow the UV cutoff
changes, and this term flows (in particular, it is generated
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along the RG even if it was not there to begin with). The
effective action for Gaussian disorder is then given by

Sreplica ¼
X
A

S0;A þ h00
X
A

Z
dtHA

−
v
2

X
A;B

Z
ddxdtdt0O0;Aðx; tÞO0;Bðx; t0Þ ð5Þ

with a running coupling denoted by h00. The new term is
equivalent to adding h00

R
dtH to the original disordered

theory.
The integrated Hamiltonian term is actually equivalent to

a stretching of time. Indeed, by Noether’s theorem, under
an infinitesimal transformation x0μ ¼ xμ þ ϵμ, the variation
of the action is δS ¼ −

R
ddxdt∂μϵνTμν. Therefore, for an

infinitesimal time dilation t0 ¼ tð1þ ϵÞ, we get precisely
the new generated term δS ¼ −ϵ

R
dtH. As a result, we can

either think about the RG as a flow including the coupling
h00, or alternatively we can rescale time to get rid of this
term, with no h00 coupling. For instance, for scalar
operators, the correlation functions in the two approaches
are related by

hO1ðx1Þ � � �OkðxkÞih00

¼
�
1 − h00

Xk
i¼1

ti
∂
∂ti

�
hO1ðx1Þ � � �OkðxkÞi þOðh200Þ:

ð6Þ

Usually, at an RG fixed point all beta functions vanish and
the coupling constants flow to fixed values. However, it turns
out that a constant beta function for h00 is also consistent
with scaling, and indeed generically this is what one finds at
nonrelativistic RG fixed points. At each RG step we rescale
the cutoff, or, equivalently, we rescale the space and time
coordinates by x → x=b, t → t=b. If h00 has a constant beta
function βh00 , then under an infinitesimal RG step it changes
by h00 → h00 − βh00 logðbÞ. Naively, this means that the
theory is not invariant, but the discussion of the previous
paragraph implies that we can equivalently keep h00 fixed
but perform an additional rescaling of the time coordinate by
t → tð1þ βh00 logðbÞÞ ∼ tbβh00 . Thus, we find that the
theory is invariant under the modified scaling transformation
x → x=b, t → t=b1−βh00 , which is an anisotropic scaling
transformation with a dynamical scaling exponent
z ¼ 1 − βh00 . If our original clean theory has a dynamical
scaling exponent zclean, then the same arguments give for the
new fixed point zdisorder ¼ zclean − βh00 .
To show how this affects correlation functions, we can

look at their RG flow in the replica theory. The RG implies
that when we change the RG scale M and simultaneously
change the coupling constants (including v, h00, and other
possible couplings λi and κi) and allow for anomalous

dimensions γ for operators, the theory remains the same.
Applied to correlation functions, this is called the Callan-
Symanzik equation [17,18]. The n → 0 limit of the replica
theory gives disorder-averaged correlation functions, and
therefore we find for connected correlation functions of the
lowest-dimension scalar operator O [19]

�
M

∂
∂M þ βv

∂
∂vþ βλi

∂
∂λi þ βκi

∂
∂κi

þ βh00
∂

∂h00 þ kγ

�
hOðx1Þ � � �OðxkÞiconn ¼ 0: ð7Þ

Using the relation (6), the two-point function at a quantum
disordered fixed point (where β ¼ 0 for all couplings other
than h00) satisfies

�
M

∂
∂M þ γ�t t

∂
∂tþ 2γ�

�
hOðx; tÞOð0Þiconn ¼ 0; ð8Þ

where γ�t ≡ −βh00 and γ� is the anomalous dimension of O
at the fixed point. Let Δ be the dimension of O at the clean
theory. The solution of (8) is determined up to a function F
to be

hOðx; tÞOð0Þiconn ¼
M−2γ�

x2Δþ2γ� F
�
Mγ�t

x1þγ�t

t

�
: ð9Þ

This is indeed invariant under scaling x → x=b, t → t=bz,
with O having scaling dimension Δþ γ� and with z ¼
1þ γ�t as above. Thus, γ�t plays the role of an ‘anomalous
dimension of time’.
For weak disorder, we can give a universal formula for

the dynamical scaling exponent. We assume that the Harris
criterion is saturated, Δ0 ¼ ðdþ 2Þ=2, so that v is dimen-
sionless and we can use perturbation theory. In this case,
substituting (4) in the v term of (3) and performing the t0
integration gives the M-dependent term

−
vcOOT

cT
logðMÞ

X
A

Z
dtHA: ð10Þ

The flow of h00 should compensate for thisM dependence,
giving the beta function βh00 ¼ vcOOT=cT þOðv2Þ. If we
normalize the two-point function of O0 to one, and use
the conformal Ward identity to compute cOOT , we obtain at
leading order in v

z ≈ 1þ v
2cT

ðdþ 1Þðdþ 2Þ
d

Γ(ðdþ 1Þ=2)
2πðdþ1Þ=2 : ð11Þ

This formula is valid for any theory with weak (marginal)
disorder. In particular, it reproduces the strongly coupled
holographic result in [20] and the weakly coupled result in
[9]. In the former, z was computed using holography, and

PHYSICAL REVIEW LETTERS 121, 071601 (2018)

071601-3



here we see the field theory interpretation of this, with the
same numerical value.
Note that (11) used (3) in which Gaussian disorder is

assumed. However, it is still true for a generic disorder
distribution with variance v, since for marginal disorder
the corrections to (3) from higher disorder moments are
irrelevant.
Operator mixings and disorder critical exponents.—For

classical disorder, the replica theory (2) is local, and the
moments of the disorder distribution are standard coupling
constants of the replica theory. Thus the disordered RG
flow is an n → 0 limit of standard RG flows, with general
mixings of all couplings fλi; κig [21,22]. In order to flow to
a (disordered) fixed point, any coupling related to the
disorder must be irrelevant at the fixed point. Since the
couplings flow independently and mix, the associated
critical exponent is no longer directly related to Δ0 (and
to ν) as it was at short distances, but rather there is a new
critical exponent ϕ, determined by the dimension of the
leading coupling related to the disorder.
For quantum disorder the situation is different, since the

disorder couplings multiply nonlocal operators in the
replica theory. For Gaussian disorder there are two inte-
grations over the time direction (3), while kth moments of
the disorder distribution multiply terms with k integrations
over the time direction [23]. Naively, since in such nonlocal
operators the different O0’s are separated in time, one may
expect their renormalization to be determined by that of the
local operatorsO0ðx; tÞ. So one may guess that the mixings
of λi and κi described above do not occur, and that the
scaling dimensions of nonlocal terms in the action like (3)
are determined by those of the local operators O0ðx; tÞ;
there would then be no independent critical exponent ϕ
associated with the disorder. We will show that these
expectations are actually not correct.
In fact, we claim that in disorder-averaged correlation

functions, general multi-local operators of the form

O1ðx; tÞ
Z

dt2O2ðx; t2Þ � � �
Z

dtkOkðx; tkÞ ð12Þ

with different values of kmix with each other. The integrals
of these operators multiply the λi and the κj, so this gives
rise to generic mixings of all these couplings. From the
point of view of the replica theory, where disorder-averaged
correlation functions of these operators are related to
those of

O1;Aðx; tÞ
Xn

A2;…;Ak¼1

Z
dt2O2;A2

ðx; t2Þ � � �
Z

dtkOk;Ak
ðx; tkÞ;

ð13Þ

such mixings appear naturally. When two operators in (13)
from the same replica Oi;Aðx; tiÞ and Oj;Aðx; tjÞ approach

each other in time, there is a short-distance singularity,
and regularizing it leads to a mixing with another operator
Ok;Aðx; tiÞ; the resulting operator has one fewer time
integration than the original operator (13). We already
saw an example of this in the previous section. Conversely,
the perturbative-in-disorder corrections to a local
operator Ok;Aðx; t0Þ can be described by bringing down
a disorder interaction (3) from the action. There is then a
singularity when (say) t approaches t0 for arbitrary t0,
and regularizing it requires mixing this operator with
Oj;Aðx; t0Þ

P
n
B¼1

R
dt0O0;Bðx; t0Þ.

From the point of view of the disordered theory, such
mixings seem very surprising, since this theory is local, and
operators at different times cannot mix. This is true, but in
disorder-averaged correlation functions, the fact that the
disorder distribution is independent of time reproduces this
mixing effect, whenever the mixing of local operators
depends on the disordered couplings hðxÞ. For instance,
consider a situation where some operator Oiðx; tÞ mixes
under the RG flow in a specific realization of disorder with
hðxÞOjðx; tÞ, and suppose that the disorder distribution is
Gaussian. In such a situation, a disorder-averaged corre-
lation function of Oi,

hOiðx; tÞ � � �i ¼
Z

DhP½h�hOiðx; tÞ � � �ihðxÞ ð14Þ

mixes with

Z
DhP½h�hðxÞhOjðx; tÞ � � �ihðxÞ

¼
Z

Dh

�
−v

δP½h�
δhðxÞ

�
hOjðx; tÞ � � �ihðxÞ

¼ v
Z

DhP½h� δ

δhðxÞ hOjðx; tÞ � � �ihðxÞ: ð15Þ

But the derivative with respect to hðxÞ brings down from
the path integral of the disordered theory an operatorR
dt0O0ðx; t0Þ. So we find that correlation functions of

Oiðx; tÞ mix with those of Ojðx; tÞ
R
dt0O0ðx; t0Þ. One can

show that such arguments account for all the nonlocal
mixings seen in the replica theory, so these are not just
artifacts of the replica description.
A specific implication of this RG analysis is that the

renormalization of the nonlocal replica operators related
to the κi is independent of that of the local operators. In
particular, the dimension of the disorder operator multi-
plying v in (3) is not directly related to that ofO0, but rather
gives rise at a fixed point to an independent critical
exponent ϕ, governing the effect of disorder at and near
that fixed point. We will give an explicit example of this
below. It would be interesting to measure this critical
exponent at disordered quantum critical points. In order to
flow to the disordered fixed point, this disordered coupling

PHYSICAL REVIEW LETTERS 121, 071601 (2018)

071601-4



must be irrelevant, but it is not directly related to ν, so from
this point of view the relation ν > 2=d is not required to
hold at a disordered fixed point. Nevertheless, there are
independent arguments that this relation must hold [24].
An example.—We give a simple example showing

explicitly that the disorder operator [multiplying v in
(3)] has an independent scaling dimension, rather than
being twice the dimension of O0. The model we use is a
simple variant of the one used in [9], a real scalar field φ
with disorder coupled to φ2, related to the random-bond
Ising model. But we study this model for four space
dimensions, where the disorder saturates the Harris bound.
The replica action is

Sreplica ¼
1

2

Xn
A¼1

Z
d4xdt

�X4
i¼1

ð∂iφAÞ2 þ αð∂tφAÞ2
�

−
v
2

Xn
A;B¼1

Z
d4xdtdt0φAðx; tÞ2φBðx; t0Þ2: ð16Þ

The need for the running coupling α in this case was
noticed in [9]. In fact, it is a special case of our general
discussion above, since the Hamiltonian deformation in (5)
reduces to this action [11] with α ¼ 2h00 þ 1. The com-
putations below are performed with this action in the
n → 0 limit.
A standard field theory computation gives the beta

function of v and its dimension ½v� ¼ 4v=π2 þOðv2Þ.
Therefore, the dimension of the operator ΨðxÞ≡P

A;B

R
dtdt0φAðx;tÞ2φBðx;t0Þ2 has to be ½Ψ�¼4−4v=π2þ

Oðv2Þ. On the other hand, computing the dimension of φ2

gives ½φ2� ¼ 3 − v=ð2π2Þ þOðv2Þ. We see that subtracting
the dimensions of the time integrals from 2½φ2� does not
reproduce [Ψ].
Instead, we should consider Ψ as an independent

operator. We can alternatively compute its dimension
by considering the correlation function hΨðxÞ ×P

A1
φA1

ðx1; t1Þ � � �
P

A4
φA4

ðx4; t4Þi. In Fig. 1(a), we show

the tree level contribution to this correlation function.
At the next order we find the corrections of Figs. 1(b)
and 1(c), which correspond to the anomalous dimensions
of each of the φ2 factors in Ψ. The naive claim that the
dimension of Ψ is fixed by ½φ2� corresponds to taking
into account only these corrections. However, there are
additional corrections shown in Figs. 1(d) and 1(e) (there
are no other diagrams contributing to the anomalous
dimension as n → 0). The sum of these corrections gives
precisely the value of [Ψ] above.
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