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We consider the speed limit for classical stochastic Markov processes with and without the local detailed
balance condition. We find that, for both cases, a trade-off inequality exists between the speed of the state
transformation and the entropy production. The dynamical activity is related to a time scale and plays a
crucial role in the inequality. For the dynamics without the local detailed balance condition, we use the
Hatano-Sasa entropy production instead of the standard entropy production. Our inequalities consist of the
quantities that are commonly used in stochastic thermodynamics and explicitly show underlying physical
mechanisms.
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Introduction.—Obtaining a fundamental bound on the
speed of state transformation is an important question
relevant to broad research fields including quantum control
theory and foundations of nonequilibrium statistical
mechanics. This question has been investigated first in an
isolated quantum system, for which the derived bounds are
nowadays called quantum speed limits [1–8]. Consider a
state transformation from a given initial state ρ ¼ ρð0Þ to a
given final state ρ0 ¼ ρðτÞ in a time interval 0 ≤ t ≤ τwith a
time-dependent Hamiltonian. Quantum speed limits claim
that there is a trade-off relation between the operation time τ
and the energy fluctuation. For instance, Mandelstam and
Tamm derived the following inequality [1]:

Lðρ; ρ0Þ
ΔEτ=ℏ

≤ τ; ð1Þ

whereLðρ; ρ0Þ is the distance between the statesρ and ρ0, and
ΔEτ and ℏ are, respectively, the energy fluctuation and the
Planck constant [9]. This explicitly shows the bound on
the operation time τ in quantum state transformations. The
quantum speed limit has recently attracted a great deal of
attention, and generalization has been studied in various
cases [10–15].
The quantum speed limit has its origin in the uncertainty

relation between time and energy, and thus, taking a naive
semiclassical limit ℏ → 0 of the relation (1) fails to obtain a
meaningful classical extension of the speed limits.
However, recent studies have considered various extensions
of the quantum speed limits to the case of classical
Hamiltonian dynamics [16–18]. In other words, the concept

of speed limits is not necessarily confined within the
quantum regime. In addition, some attempts have been
made toward further extension to classical stochastic
systems [18–21]. For instance, Ref. [18] derived a speed
limit inequality for time-independent Markov jump proc-
esses (i.e., relaxation processes) with the local detailed
balance condition. Although these results are restricted to
somewhat limited dynamics, and/or the obtained relations
are given with abstract mathematical forms, they strongly
suggest that there must exist a general and concise form of
speed limit for classical stochastic systems such that its
underlying physical mechanism becomes clear, as the
original quantum speed limit does.
In this Letter, we derive two speed limit inequalities for

the dynamics with and without the local detailed balance
condition for the general Markovian dynamics with discrete
states. These inequalities consist of several quantities that
have been studied in nonequilibrium statistical physics
[22]. In the first inequality, the entropy production plays the
role to bound the speed of state transformation. In addition,
the inequality contains the dynamical activity, which
quantifies how frequently the state changes and, thus, is
related to the time scale of the dynamics [23–26]. The
second inequality gives a nontrivial bound even when the
system has nonzero stationary heat current. In this inequal-
ity, we use a generalization of the entropy production, the
Hatano-Sasa entropy production [27], instead of the con-
ventional entropy production. It is known that the Hatano-
Sasa entropy production leads to the generalized Clausius
inequality for systems with a stationary current [27]. Both
of the derived inequalities connect the speed limit
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expressions to the nonequilibrium thermodynamics, and
thus, provide a clear picture of the underlying mechanism
for the general Markovian dynamics with discrete states.
Setup.—Consider a classical stochastic Markov process

with discrete states. Let piðtÞ and WijðtÞ be the probability
distribution of the state i and the transition rate matrix
element of the transition j → i at time t. The time evolution
of the probability distributions is given by the following
master equation:

d
dt

piðtÞ ¼
X
j

WijðtÞpjðtÞ

¼
X
jð≠iÞ

WijðtÞpjðtÞ −WjiðtÞpiðtÞ: ð2Þ

The transition rate matrix satisfies the normalization con-
dition

P
iWijðtÞ ¼ 0 and non-negativity WijðtÞ ≥ 0 for

i ≠ j. We consider the state transformation from pð0Þ to
pðτÞ by changing the transition rate matrix in time for
0 ≤ t ≤ τ. We measure the distance of two probability
distributions p and p0 by the statistical distance with the L1

norm, or the total variation distance [28], defined as

Lðp; p0Þ ≔
X
i

jpi − p0
ij: ð3Þ

We consider a system attached to a single or multiple
heat baths. In the latter case, the transition rate matrix
consists of each contribution from independent reservoirs
as WðtÞ ¼ P

νW
νðtÞ, where WνðtÞ is the transition rate

matrix associated with the νth heat bath. We denote by
EiðtÞ the energy of the ith state of the system. Then, the
heat absorption by the bath associated with the transition
i → j is given by Qi→jðtÞ ¼ EiðtÞ − EjðtÞ. We also intro-
duce the Shannon entropy of the system [28]

HðtÞ ≔ −
X
i

piðtÞ lnpiðtÞ: ð4Þ

Following the standard theory in the stochastic thermo-
dynamics, we define the entropy production rate _Σ and the
total entropy production Σ by the sum of the entropy
increase in the system and that in the baths as follows [22]:

_ΣðtÞ ≔ d
dt

HðtÞ þ
X
ν

X
i≠j

Wν
jiðtÞpiðtÞβνQi→jðtÞ; ð5Þ

Σ ≔
Z

τ

0

dt _ΣðtÞ: ð6Þ

Here, βν is the inverse temperature of the νth heat bath.
To quantify the system’s time scale, we employ the

dynamical activity AðtÞ and its time average hAiτ

AðtÞ ≔
X
i≠j

WijðtÞpjðtÞ; ð7Þ

hAiτ ≔
1

τ

Z
τ

0

dtAðtÞ: ð8Þ

The dynamical activity quantifies how frequently jumps
between different states occur, and thus, it characterizes the
time scale of the system [23–26,29].
First main result.—First, we consider a system with the

local detailed balance condition, i.e.,

Wν
ijðtÞe−βνEjðtÞ ¼ Wν

jiðtÞe−βνEiðtÞ; ð9Þ

for any ν, i, and j. In what follows, in order to suppress the
length of mathematical expressions, we drop the time
dependence in quantities unless necessary.
Now, we derive the first speed limit inequality, where the

entropy production and activity bound the speed of state
transformation. To this end, we evaluate the entropy
production rate (5) as follows:

_Σ ¼ 1

2

X
ν

X
i≠j

ðWν
jipi −Wν

ijpjÞ ln
Wν

jipi

Wν
ijpj

ð10Þ

≥
X
ν

X
i≠j

ðWν
jipi −Wν

ijpjÞ2
Wν

jipi þWν
ijpj

: ð11Þ

The first line is a conventional form with the local detailed
balance condition [22], and the second line follows from
the inequality ða − bÞ lnða=bÞ ≥ 2ða − bÞ2=ðaþ bÞ, which
is valid for non-negative a and b. To connect the change in
the probability distribution with the entropy production rate
and the instantaneous activity, we transform the master
equation (2) by using the Schwarz inequality twice

X
i

���� ddtpi

����≤
X
ν;i

����
X
jð≠iÞ

ðWν
ijpj−Wν

jipiÞ
����

≤
X
ν;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�X
jð≠iÞ

ðWν
ijpj−Wν

jipiÞ2
Wν

ijpjþWν
jipi

��X
jð≠iÞ

ðWν
ijpjþWν

jipiÞ
�vuut

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�X
ν;i≠j

ðWν
ijpj−Wν

jipiÞ2
Wν

ijpjþWν
jipi

��X
i≠j

ðWijpjþWjipiÞ
�vuut

≤
ffiffiffiffiffiffiffiffiffi
2 _ΣA

p
: ð12Þ

By integrating Eq. (12) with time, the entropy production
and the dynamical activity are connected to the distance of
states as

L(pð0Þ; pðτÞ) ≤
X
i

Z
τ

0

dt

���� ddt pi

����
≤
Z

τ

0

dt
ffiffiffiffiffiffiffiffiffi
2 _ΣA

p
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2τΣhAiτ

p
: ð13Þ
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At the last inequality, we used the Schwarz inequality
again. From this, we arrive at the following bound on the
state transformation:

τI ≔
L(pð0Þ; pðτÞ)2

2ΣhAiτ
≤ τ: ð14Þ

This is the first main result. Remarkably, the relation (14)
has a similar structure to the quantum speed limit (1).
Following the interpretation on (1), the relation (14) may be
interpreted as a trade-off relation between the speed of the
state transformation and the entropy production. Here, the
combination of the entropy production and the dynamical
activity plays a central role to determine the time of state
transformation. We should note that, because the time scale
of stochastic systems is not universal but depends on the
coefficients of transition rates, the dynamical activity also
depends on specific models and is not a universal constant.
This inequality is derived for a general transition matrix

W as long as it satisfies the local detailed balance condition
(9). Here, we remark that the bound τI contains the entropy
production in the denominator. Hence, when the system is
attached to multiple heat baths with different temperatures,
τI will vanish for large τ because the entropy production
grows linearly in time due to finite net currents between
baths. In this case, Eq. (14) falls into a trivial bound;
τI ¼ 0 ≤ τ. On the other hand, the inequality is, in general,
useful for the case with a single heat bath or the case in a
relatively short time scale. To get a finite bound value for
the far-from-equilibrium regime and large τ, we derive
another inequality below, which is valid in general
dynamics.
Second main result for general dynamics.—Here, we

derive another inequality for the general dynamics, which
provides a nontrivial finite bound even for systems with
finite stationary currents. It is also applicable to systems
without the local detailed balance condition (9).
Assuming the uniqueness of the stationary state (SS), we

define the excess entropy production for general stochastic
processes, which is responsible for the state transformation,
as [27]

Sexi→jðtÞ ≔ ln
pSS
j ðtÞ

pSS
i ðtÞ : ð15Þ

Here, pssðtÞ is the instantaneous stationary probability
distribution for the transition rate matrixWðtÞ. For systems
driven by baths, the excess entropy is understood as the
entropy production of baths after deduction of that caused
by stationary dissipation. If the stationary state is an
equilibrium state, this quantity reduces to the usual
expression of the entropy production in the heat bath.
Using Eq. (15), we define the Hatano-Sasa (HS) entropy
production rate and the total HS entropy production [27,30]

_ΣHSðtÞ ≔ d
dt

HðtÞ þ
X
i;j

WjiðtÞpiðtÞSexi→jðtÞ; ð16Þ

ΣHS ≔
Z

τ

0

dt _ΣHSðtÞ: ð17Þ

We remark that the HS entropy production depends only on
WðtÞ and not on each WνðtÞ. It is known that, even in the
presence of finite stationary currents, the HS entropy
production rate is infinitesimally small if the control
parameter of the system is changed quasistatically [27].
This is analogous to the behavior of the conventional
entropy production against the quasistatic change of the
parameters in the case with a single bath. In this sense, the
HS entropy production plays a similar role to the conven-
tional entropy production in the equilibrium situation.
We show the second main result, which is valid for the

general dynamics including the case without the local
detailed balance condition

τII ≔
c�L(pð0Þ; pðτÞ)2

2ΣHShAiτ
≤ τ; ð18Þ

where c� ≔ 0.896… is a solution of

c� ¼ min
y

ð1 − ey þ yeyÞð1þ eyÞ
ð1 − eyÞ2 : ð19Þ

The number c� has already appeared in several contexts so
far [31,32].
First, we make several remarks on the physical impli-

cation of this inequality, and next provide the proof. In the
inequality, the HS entropy production is a key ingredient to
characterize a bound, and the dynamical activity again
plays a crucial role for determining the time scale in the
dynamics. Since the total HS entropy production does not
grow linearly in time in general, τII provides a finite bound
even for large τ. Hence, this inequality provides a nontrivial
bound for the general dynamics including the system with a
finite net current attached to multiple heat baths. On the
other hand, for the case with a single heat bath, the HS
entropy production ΣHS reduces to the standard entropy
production Σ, and hence, the bound (18) becomes weaker
than (14) by the factor c�.
Now, we show the proof of Eq. (18), which is similar to

that of Eq. (14). To this end, we introduce the dual matrix
W̃ [33] given by

W̃ij ≔
WjipSS

i

pSS
j

: ð20Þ

We can easily check that W̃ is indeed a transition rate
matrix (i.e., W̃ satisfies the normalization condition and
non-negativity). Note that the diagonal element of the dual
matrix and the original one are equal
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X
jð≠iÞ

W̃ji ¼ −W̃ii ¼ −Wii ¼
X
jð≠iÞ

Wji: ð21Þ

The dual matrix provides another expression of the HS
entropy production rate

_ΣHS ¼
X
i≠j

Wjipi ln
Wjipi

W̃ijpj

¼
X
i≠j

�
Wjipi ln

Wjipi

W̃ijpj
þ W̃ijpj −Wjipi

�
; ð22Þ

where we used Eq. (21). This is a generalized form of the
partial entropy production [34,35]. Using an inequality
a ln a=bþ b − a ≥ c�ða − bÞ2=ðaþ bÞ for non-negative a
and b [31], we obtain the following relation:

_ΣHS ≥ c�
X
i≠j

ðWjipi − W̃ijpjÞ2
Wjipi þ W̃ijpj

: ð23Þ

Then, we arrive at the key relation

X
i

���� ddtpi

����¼
X
i

����
X
jð≠iÞ

ðWijpj−W̃jipiÞ
����

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
c�
X
i≠j

ðWijpj−W̃jipiÞ2
WijpjþW̃jipi

��
1

c�
X
i≠j

ðWijpjþWjipiÞ
�vuut

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ΣHS2A

c�

r
: ð24Þ

In the second line, we used the Schwarz inequality twice
and Eq. (21). Following the same procedure as in Eq. (13),
Eq. (24) leads to the desired inequality (18).
Example: two-level system.—We demonstrate our

inequalities (14) and (18) with a simple solvable model.
This system consists of two states, 0 and 1, whose energies
are given by E0 ¼ 0 and E1ðtÞ, respectively. Suppose that
the initial distribution is p0ð0Þ ¼ p1ð0Þ ¼ 1=2, and we
transform it to p0ðτÞ ¼ 3=4 and p1ðτÞ ¼ 1=4 with the time
interval τ. As we see below, even such a simple model is
very instructive to understand the physical structure of our
results.
First, we consider a single heat bath with inverse

temperature β [See Fig. 1.(a)]. For convenience, we set
the transition rate matrix as

W10 ¼ 1; W01 ¼ eβE1ðtÞ

with

E1ðtÞ ≔
1

β
ln

�
4τ þ 1

2τ − t
− 1

�
; ð25Þ

which provides the solution p1ðtÞ ¼ 1=2 − t=ð4τÞ.
Then, it is straightforward to get the dynamical activity

and the distance as AðtÞ ¼ 1þ 1=ð4τÞ þ t=ð2τÞ and
L(pð0Þ;pðτÞ) ¼ 1=2. The averaged activity hAiτ ¼
5=4þ 1=ð4τÞ is a quantity of Oð1Þ. The bound τI on the
operation time is explicitly given by

τI ¼
1

ð10þ 2=τÞΣ ; ð26Þ

where the entropy production Σ is given through some
calculations [36]:

Σ ¼ 1

4τ

Z
2τþ1

2τ
dy ln

�
1þ τ

y

�
: ð27Þ

The asymptotic behavior of Eq. (14) in large τ reads
1=ð10ΣÞ ≤ τ, which is a very good estimation since
Σ ≃ 1=ð4τÞ lnð3=2Þ ¼ 0.101… × 1=τ. We show the plot
of these results in Fig. 1(a).
Next, we consider two heat baths, L and R,

and demonstrate the validity of Eq. (18) [See Fig. 1.(b)].
The transition matrices associated with each bath are
given by

WL
10 ¼ α; WL

01 ¼
1

2

�
4τ þ 1

2τ − t
− 1

�
;

WR
10 ¼ 1 − α; WR

01 ¼
1

2

�
4τ þ 1

2τ − t
− 1

�
;

with α ≠ 1=2, which ensures the existence of the nonzero
stationary current between L and R in the stationary state.
The total transition rate matrix, Wij ¼ WL

ij þWR
ij, is set to

be the same as the previous case, so that we can compare

(b)(a)

FIG. 1. (a) Demonstration of Eq. (14) for a single bath. In the
bottom plot, the purple dotted line is the linear reference line
y ¼ τ, and the green solid curve is y ¼ τI as a function of τ. These
two lines almost agree with each other from the aspect of the
smallness of the relative error ðτ − τIÞ=τ, which clearly shows the
tightness of the bound (14). (b) Demonstration of Eq. (18) for two
baths with α ¼ 2=3 (which means that a finite stationary current
exists). The bottom plot shows that Eq. (14) (τI ≤ τ: the green
solid line) is a poor bound, while Eq. (18) (τII ≤ τ: the blue
dashed-dotted line) still provides a meaningful bound.
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the second case with the first one. The probability
distribution and the dynamical activity are completely
the same as in the single-bath case; p1ðtÞ¼1=2−t=ð4τÞ
and AðtÞ ¼ 1þ 1=ð4τÞ þ t=ð2τÞ. In contrast to these
quantities, the entropy production is larger than that in
the single-bath case (The explicit form of the entropy
production is presented in [37]). In particular, for large τ,
the entropy production asymptotically behaves as Σ≃
ð5τ=8Þð1=2 − αÞ ln½ð1 − αÞ=α�, which increases in propor-
tion to τ. Thus, the first inequality (14) falls into a trivial
bound in this case (i.e., τI → 0 in τ → ∞ limit).
On the other hand, the HS entropy production is given by

ΣHS ¼ 1

4τ

Z
2τþ1

2τ
dy ln

�
1þ τ

y

�
; ð28Þ

which is exactly the same as the entropy production (27) in
the single-bath case. This coincidence is suggestive since
the HS entropy production is a natural generalization of the
entropy production. The bound τII on the operation time is
given by

τII ¼
c�

ð10þ 2=τÞΣHS ; ð29Þ

which provides a meaningful bound even for large τ;
an asymptotic bound c�=ð10ΣHSÞ ≤ τ. See the plot in
Fig. 1(b).
Discussion.—We have established fundamental trade-off

inequalities (14) and (18) in general stochastic processes
which claim that quick state transformation inevitably
requires large entropy production or large Hatano-Sasa
entropy production. This shows clear contrast to the case of
an isolated quantum system, where the energy fluctuation
plays a role to bound the speed of the state transformation.
The coefficient appearing in these inequalities is the
dynamical activity, which determines the time scale of
dynamics. These speed limit inequalities are demonstrated
in a simple toy model. In the equilibrium condition, the first
inequality (14) provides a very good bound, while if a
stationary current exists, only the second inequality (18)
provides a nontrivial bound in the long-time limit. We
remark that the equalities in these inequalities are hard to
hold in general setups even in systems with a single
heat bath.
Since nonequilibrium thermodynamics for quantum

Markov processes is also developed [38–42], and our main
idea is applicable to such systems [35,43], it is natural to
ask the extension of our result to open quantum systems.
Although some technical difficulties exist, it is worth
investigating this extension and comparing the speed limits
extended from that for isolated quantum systems [10–14].
Probabilistic systems with discrete states are ubiquitous

in nature, such as proteins in biosystems [44,45] and
quantum dots in the classical regime [46,47], to name only
a few. Thus, our inequalities can be experimentally tested at

the quantitative level. In particular, quantum-dot systems
have high-controllability with high accuracy nowadays
[46–50], and are the most promising experimental objects.
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