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Cavity QED is a promising avenue for the deterministic generation of entangled and spin-squeezed states
for quantum metrology. One archetypal scheme generates squeezing via collective one-axis twisting
interactions. However, we show that in implementations using optical transitions in long-lived atoms the
achievable squeezing is fundamentally limited by collectively enhanced emission into the cavity mode
which is generated in parallel with the cavity-mediated spin-spin interactions. We propose an alternative
scheme which generates a squeezed state that is protected from collective emission, and investigate its
sensitivity to realistic sources of experimental noise and imperfections.
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Introduction—Atomic clocks operated with long-lived
optically excited states in large ensembles of alkaline-earth
atoms have led to unprecendented advances in frequency
and time standards [1–6]. This has been achieved both by
taking advantage of the superior precision afforded by
operating at optical rather than microwave frequencies, and
by utilizing large numbers of atoms N to quickly average
down quantum projection noise. However, these clocks are
reaching a point where improvements in sensing capabil-
ities based on individual particle control have limited return
due to physical and practical constraints, such as difficulty
increasing the number of participating atoms due to colli-
sional shifts [7]. This presents a clear need for a new
paradigm of sensors that utilize many-particle quantum
correlations [8], dramatically reducing quantum noise
and breaking through the standard quantum limit (SQL)
on phase sensitivity, δϕ ∼ 1=

ffiffiffiffi
N

p
rad. However, quantum

correlations are difficult to create and intrinsically fragile to
decoherence, and therefore the design and implementation
of robust methods for entanglement generation is an
important current challenge for quantum-enhanced sensors,
particularly the next-generation of atomic clocks.
A canonical example of metrologically useful entangle-

ment is squeezed states [9,10], which feature a reduction of
the quantum projection noise along a particular quadrature.
In atomic ensembles, spin-squeezed states have success-
fully been generated in proof-of-principle systems that
operate on microwave-frequency transitions by projective
measurement and feedback protocols [11–16], with state-
of-the-art schemes reaching ∼18 dB below SQL [15,16].
Deterministic production of spin-squeezed states generated
by one-axis twisting (OAT) schemes has also been dem-
onstrated on microwave transitions [17–19]. However, the
best reported squeezing remains limited at 8 dB below SQL
[18]. It is then desirable to understand how entanglement
generated by unitary dynamics can be significantly

improved via protocols applicable to optical transitions
used in current state-of-the-art atomic clocks.
In this vein, recent work demonstrated the possibility of

using photon-mediated spin-exchange interactions to engi-
neer OAT in an undriven optical cavity [20,21]. The scheme
is relevant to the dynamical generation of spin-squeezed
states directly on the optical clock transition. However, the
achievable squeezing is severely limited by intrinsic dis-
sipative noise arising due to superradiance: the collective
emission and leakage of photons from the cavity.
In this Letter, we propose to overcome this problem by

generating squeezing from an unorthodox initial state
composed of a pair of spin ensembles with zero mean
total spin projection. This protocol, which we refer to as
‘two-spin squeezing’ (TSS), generates squeezing in an
almost orthogonal quadrature to the noise arising from
superradiance. Our theoretical calculations demonstrate
this leads to robustness to collective emission and the
TSS scheme consequently outperforms the conventional
OAT protocol. We also examine the performance of TSS
when typical single-particle decoherence is included.
Model and definitions.—We consider a system of N

atoms trapped in a standing-wave optical lattice which is
supported by an optical cavity [20], illustrated in Fig. 1(a).
The cavity field couples the atom’s ground and excited clock
states with single-photon Rabi frequency 2g. For simplicity,
we assume the atom-light coupling is spatially uniform,
which could be achieved by selective loading of atoms in
the spatial lattice or alternatively by using a ring cavity. We
describe the atomic ensemble using collective spin operators
Ŝx;y;zα ≡P

jσ̂
x;y;z
j;α =2, where σ̂x;y;zj;α denote Pauli matrices. The

summation of j runs over the atomic ensemble and α indexes
internal degrees of freedom, e.g., hyperfine levels.
The narrow linewidth of the clock transition γ, relative

to the cavity linewidth κ ≫ γ, allows us to adiabatically
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eliminate the cavity field such that the photons only
mediate effective spin dynamics [20]. The reduced density
matrix of the atomic spin then evolves according to the
effective Hamiltonian [22],

Ĥeff ¼ ℏ
X
α;β

χα;βŜ
þ
α Ŝ

−
β ; ð1Þ

and the Lindblad jump operator L̂Γ ¼ P
α

ffiffiffiffiffiffiffiffiffiffi
Γα=2

p
Ŝ−α ,

where Ŝ�α ≡ Ŝxα þ iŜyα describes collectively enhanced
emission into the cavity. The relative strength of the
interactions χα;β ¼ 4gαgβΔc=ð4Δ2

c þ κ2Þ and dissipation
Γα ¼ 4g2ακ=ð4Δ2

c þ κ2Þ is controlled by the detuning Δc
of the cavity from resonance with the atomic transition.
Throughout the Letter we now set ℏ ¼ 1.
In terms of spin operators, squeezing is characterized

by the parameter ξ2 ≡ Nmin½hðδŜψÞ2i�=jhS⃗ij2 [29], where
min½hðδŜψÞ2i� is the minimal variance of the state along a

direction n̂ψ perpendicular to hS⃗i (i.e., n̂ψ · hS⃗i ¼ 0 and
hðδŜψÞ2i≡ hðn̂ψ · Ŝψ Þ2i − hn̂ψ · Ŝψ i2). Squeezing ξ2 < 1

indicates that the quantum noise of the state along one
quadrature is reduced below the SQL (i.e., a coherent
spin state).
Spin squeezing by OAT.—When a single internal level is

populated, the effective Hamiltonian reduces to Ĥeff ¼
χŜþŜ−, which can be rewritten as Ĥeff ≡ χðŜ2 − Ŝ2z þ ŜzÞ.
The term ∝ Ŝ2z generates OAT [10] while the last term

generates a trivial single-particle rotation which is
neglected herein. The first term ∝ Ŝ2 ≡ Ŝ2x þ Ŝ2y þ Ŝ2z
commutes with the OAT, but is responsible for opening
a many-body gap between Dicke manifolds with different
eigenvalues SðSþ 1Þ (S ¼ 0;…; N=2) of Ŝ2, which can
protect the collective dynamics from slow single-particle
decoherence [20]. Here, we assume the unitary dynamics is
restricted to the S ¼ N=2 manifold and thus consider Ĥeff

equivalent to the OAT Hamiltonian ĤOAT ¼ χŜ2z .
The OAT can be understood semiclassically, illustrated

in Fig. 1(b), in terms of the mean-field Hamiltonian
ĤMF ≡ 2χhŜziŜz, which generates rotations about the Sz
axis at a rate dependent on the atomic inversion. Under
ĤMF the isotropic noise distribution of an initial spin
coherent state along x, jΦOATi ¼ jN=2ix with ŜxjN=2ix ¼
N=2jN=2ix, shears into an anisotropic distribution with
reduced noise along one quadrature and increased noise
along the other. As the spin-spin interactions responsible
for the OAT dynamics are mediated by a macroscopically
populated cavity field, they are also accompanied by
superradiant collective emission from the cavity mode.
Leakage of photons from the cavity carries away informa-
tion at the rate κhâ†âi ∼ κN2, and correspondingly intro-
duces excess dissipative noise ∝ N2Γt to the Sz quadrature,
degrading the spin squeezing.
A perturbative treatment of both collective emission and

OAT leads to an expression for the time evolution of the
squeezing [21,22],

(a) (c)

(b)

x

z

FIG. 1. (a) Proposed experimental system: An ensemble of N atoms trapped in a standing-wave lattice potential and optically coupled
to the field within an optical cavity of linewidth κ. Selective population of the mF levels of the 1S0 to 3P0 transition of 87Sr [20] realizes
independently controllable collective spins. (b) For both OAT and TSS, the Hamiltonian can be decomposed into a shearing term, Ŝ2z
(OAT) or Ŝ2y (TSS), and negligible terms (gray) which do not contribute to dynamics. The shearing terms can be interpreted
semiclassically as a precession driven by quantum fluctuations (green). (c) Schematic of squeezing protocols. (i)–(iii) For OAT,
fluctuations along Sz (example shown by green vector) drive a precession of the Bloch vector S⃗ (red, precession indicated in blue) about
the Sz axis, generating squeezing of the noise distribution [red in (i) and (iii)]. (iv)–(vi) For TSS, two back-to-back collective spins are
prepared [(iv) light red], and common-mode fluctuations along Sy [(v) light red] generate a weak coherence along Sy (green), driving the

precession of the Bloch vectors S⃗1;2 (solid red, precession indicated in blue). Subsequent rotation about Sy of one of the spins maps this
precession into squeezing of the collective distribution [(vi) red].
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ξ2OAT ≈
1

2Nβ
þ 2

3
β2 þ ΓNt; ð2Þ

where β≡ Nχ2t2=2 ≪ 1. The term ∝ 1=β describes the
squeezing, while the term ∝ β2 describes oversqueezing
due to the curvature of the Bloch sphere that yields a non-
Gaussian distribution. The last term ΓNt describes the
collectively enhanced dissipative noise added to the
squeezed quadrature. For Γ ¼ 0, the optimal OAT squeez-
ing is limited only by the non-Gaussian corrections, which
are reached when β2 ∼ 1=ðNβÞ and for N ≫ 1 scales as
t ∼ N−2=3 [10]. In contrast, superradiant emission, Γ ≠ 0,
limits the optimal squeezing when ΓNt ∼ ð1=NβÞ (typi-
cally a much shorter timescale than non-Gaussian effects).
The impact of superradiance is clear if one minimizes
Eq. (2) with respect to t, for fixed cavity parameter Γ=χ. In
this case, ignoring the negligible term ∝ β2 in Eq. (2), the
squeezing is bounded by

ξ2OATjΓ;χ ≈
3

22=3

�
Γ
χ

�
2=3

; ð3Þ

independent of atom number N.
Two-spin squeezing (TSS).—We now consider the

alternative scheme and demonstrate how initiating the
dynamics from a state of zero mean coherence maps to
an effective Hamiltonian, which generates squeezing that
is robust to collective emission. Initially the atoms are
separated into two ensembles, denoted as α ¼ 1, 2, each
composed of N=2 atoms, which are prepared in an
incoherent state of two opposing collective spins:
jΦTSSi ¼ jN=4ix1 ⊗ j − N=4ix2 , each in a stretched eigen-

state of Ŝxj¼1;2, Ŝxj j � N=4ixj ≡�ðN=4Þj � N=4ixj . This
state, which could be realized using the mF ¼ �9=2
hyperfine levels of 87Sr [20], has coherence hŜþi ¼ 0

and hŜþŜ−i ¼ N=2, and as such the cavity occupation
hâ†âi ∝ hŜþŜ−i ∼ N is reduced by a factor of N to that of
N independent emitting atoms. For clarity, the total
collective spin operators are Ŝα≡ Ŝα1þ Ŝα2 for α ¼ x, y, z,
where the subscript denotes the ensemble internal degree
of freedom.
Even though the initial state has zero mean coherence it

will nevertheless nontrivially evolve under the Hamiltonian
Eq. (1), Ĥeff ¼ χŜþŜ− ≡ χðŜþ1 þ Ŝþ2 ÞðŜ−1 þ Ŝ−2 Þ. Here, we
assume χα;β ≡ χ, satisfied for mF ¼ �9=2 or any “sym-
metric” pair of hyperfine levels �mF. To reveal squeezing,
after the dynamics we perform a local spin-flip rotation of
the 2nd collective spin about ŷ. For short evolution under
Ĥeff , which is what we consider in the following, the
evolved state is approximately transferred back to the fully
symmetric manifold S ¼ N=2 (see later discussion and
Ref. [22]). For example, in the absence of evolution under
Ĥeff the final state would be jN=2ix.

The overall protocol can be recast as evolution under a
Hamiltonian in a rotated reference frame, acting on an
initially collective state (S ¼ N=2) with all spins aligned
together along x̂:

jψðtÞi ¼ R̂y
2ð−πÞe−iĤeff tR̂y

2ðπÞjN=2ix ≡ e−i
ˆ̃HtjN=2ix:

Here, R̂y
jðϕÞ ¼ e−iϕŜ

y
j is a collective rotation acting on the

j ¼ 1, 2 internal state and ˆ̃H ≡ χ½ðŜx1 − Ŝx2Þ2 þ ðŜy1 þ Ŝy2Þ2�.
The second term of ˆ̃H induces OAT about the ŷ axis,
leading to an approximate azimuthally (“phase”) squeezed
state. The first term is more complex and can lead to
degradation of squeezing. However, as the initial state in
this reference frame is an eigenstate of Ŝx1 and Ŝx2, then at
the relevant short timescale of squeezing this term can be
ignored and the dynamics essentially remains in the
S ¼ N=2 manifold. Our scheme is not overly sensitive
to this assumption and can tolerate number fluctuations
≲N1=3 in the prepared ensembles [22].
Physical intuition is gained by a semiclassical descrip-

tion in the original frame of the back-to-back spins jΦTSSi,
illustrated in Fig. 1(c). For this initial state [panel (iv)],
the mean-field Hamiltonian corresponds to a precession
of each of the individual spins about the Sy projection
of the total collective spin, ĤMF ≈ 2χhŜy1 þ Ŝy2iðŜy1 þ Ŝy2Þ.
Shearing is induced by common-mode fluctuations of the
initial states ∼

ffiffiffiffi
N

p
along Sy (i.e., phase noise), which

generate a weak coherence about which the opposing
classical Bloch vectors precess [panel (v)]. After applica-
tion of the π pulse to the 2nd collective spin this precession
yields net shearing of the collective ensemble about ŷ
[panel (vi)].
In contrast to OAT, the TSS dynamics are generated by a

cavity field with a
ffiffiffiffi
N

p
-fold reduced amplitude—a conse-

quence of the field being induced by quantum fluctuations

of the atomic coherence hâiTSS∼
ffiffiffiffiffiffiffiffiffi
hŜ2yi

q
∼

ffiffiffiffi
N

p
. Regardless

of this relatively weak cavity field, the TSS protocol
achieves a similar level of shearing relative to OAT. This
is reconciled by understanding that in OAT the Bloch
vector precesses at a rate ∝ N—related to the cavity field
amplitude hâiOAT ∼ hŜþi ∼ N—about a rotation axis that is
nearly aligned to said Bloch vector, up to fluctuations
associated with atomic projection noise ∝

ffiffiffiffi
N

p
. Conversely,

in TSS the rotation is slower by a factor of
ffiffiffiffi
N

p
relative

to OAT. However, the Bloch vectors associated with the
individual ensembles are nearly perpendicular to the
rotation axis. Thus, in TSS the component of the Bloch
vectors perpendicular to the axis of rotation is

ffiffiffiffi
N

p
larger

than OAT, compensating for the
ffiffiffiffi
N

p
smaller cavity field

compared to OAT.
We now shift our focus to explaining why TSS is

robust against collective emission. While the reduced
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atomic coherence of the initial state leads to a reduction
in the rate of photon leakage from the cavity, ∝ κN,
dissipative noise is still added to the Sz quadrature of
the final state at a rate identical to OAT, ∝ N2Γt. This
is reconciled by noting that the Sz quadrature of the
measured state after the rotation about ŷ actually corre-
sponds to the inversion difference Ŝz1 − Ŝz2 during the
squeezing dynamics. In contrast to OAT, the dissipative
noise in the measured Sz quadrature is then not driven by
the usual atomic coherence hŜþŜ−i (i.e., cavity occupation
hâ†âi), but rather the differential atomic coherence
hðŜþ1 − Ŝþ2 ÞðŜ−1 − Ŝ−2 Þi ∼ N2. While this dissipative noise
thus remains large, unlike OAT it now contributes pre-
dominantly to the antisqueezed quadrature of a phase-
squeezed state. We illustrate this contrast to OAT in
Fig. 2(b). We emphasize that the reduced atomic coherence
hŜþŜ−i and suppression of superradiance remains an
important ingredient for TSS: Superradiant decay of the
atomic inversion would generate fluctuations in Ŝx and thus

degrade correlations via the term χðŜx1 − Ŝx2Þ2 in ˆ̃H.
A perturbative treatment leads to the approximate

expression for the squeezing parameter [22]:

ξ2TSS ≈
1þ ΓNt
2Nβ

þ 14

9
β2: ð4Þ

The contrast to OAT is signaled by the suppression of the
dissipative noise by the prefactor ∼1=ðNβÞ, reflecting that

it is added predominantly to the antisqueezed rather than
squeezed quadrature. Importantly, this means that for TSS
the optimal squeezing essentially remains limited only by
the emergence of non-Gaussian corrections to the distri-
bution ∼β2. Optimizing the squeezing with respect to time
for fixed cavity parameters, Eq. (4) leads in this case to

ξ2TSSjΓ;χ ≈
211=3

2N2=3 þ
71=6Γ

31=3χN1=3 : ð5Þ

Comparing to OAT, the key difference is that collective
decoherence does not lead to a lower bound on squeezing.
For large N we thus find that TSS scales with atom number
as ξ2TSSjΓ;χ ∝ N−1=3.
We directly compare the optimal squeezing generated by

OAT and TSS for the case of N ¼ 1000 in Fig. 2. Results
are based on numerical solution of the master equation
taking into account all relevant secondary effects, including
decay of the spin-length jhS⃗ij due to quantum fluctuations
and noncollective terms ∝ ðŜx1 − Ŝx2Þ2 in the TSS

Hamiltonian ˆ̃H. The validity thus goes beyond the pertur-
bative analysis of Eqs. (2) and (4). They confirm that,
unlike OAT, suppression of collective emission in TSS
leads to squeezing limited by non-Gaussian corrections to
the spin distribution at relatively long times. The strikingly
different impact of superradiance in the schemes is illus-
trated in the inset, where we plot the numerically obtained
optimal squeezing as a function of Γ=χ.
Sensitivity to single-particle decoherence.—Instead of

operating at fixed Γ=χ ≡ κ=Δc one could, in principle,
remove the detrimental effect of superradiance in OAT by
operating at a large detuning Δc. However, in reality under
this condition the generation of squeezing will become
sufficiently slow that other external and technical noise
sources become the limiting factors for metrological
sensitivity. In this vein, we now include relevant single-
particle decoherence mechanisms which typically can be
characterized in terms of the single-particle jump operators
L̂s
j ¼

ffiffiffiffiffiffiffiffiffi
γs=2

p
σ̂−j (describing, e.g., spontaneous emission or

Raman light scattering) and L̂el
j ¼ ffiffiffiffiffiffiffiffiffiffi

γel=8
p

σ̂zj (describing,
e.g., Rayleigh scattering and dephasing from stray fields or
collisions).
By treating single-particle and collective emission per-

turbatively [22] we obtain the approximate expressions

ξ2TSS;γs ≈
1þ ΓNt
2Nβ

þ γst; ξ2OAT;γs ≈
1

2Nβ
þ ΓNtþ γst;

where we ignore the terms ∝ β2 as irrelevant compared
to the dissipative contribution. The clear difference here is
that the squeezing achievable via OAT is limited by both
collective and single-particle emission, whereas TSS sup-
presses the collective component. One then expects that
squeezing can be generated faster with TSS to minimize
single-particle decoherence, as collective decoherence is

(a)

(b)

FIG. 2. (a) Comparison of squeezing with OAT and TSS
protocols for N ¼ 1000. Faded lines are ideal Γ ¼ 0 results
for OAT (blue) and TSS (red dashed). Solid lines are Γ ¼ 0.1χ
results for OAT (blue) and TSS (red dashed). Shown inset is the
best squeezing as a function of Γ=χ (OAT: solid blue, TSS:
dashed red). Dot-dashed blue line indicates squeezing for OAT
and N ¼ 200, illustrating the invariance with N. (b) Dark region
indicates ideal squeezed state, light region indicates distribution
with added dissipative noise due to photon leakage from the
cavity (arrows), which approximately aligns with the squeezed
quadrature or antisqueezed quadrature.
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not the most relevant limitation. This is supported by
optimising the achievable squeezing by varying the cavity
detuning Δc, yielding the superior ξ2TSSjγs ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24=ðNηsÞ

p
when compared to ξ2OATjγs ≈ 6ðNηsÞ−1=3 where ηs ¼
4g2=ðκγsÞ is an effective cavity cooperativity. We note
that the scaling achievable with TSS is equivalent to that
predicted by a twist-and-turn protocol in Ref. [21].
Nevertheless, this scheme requires an additional continuous
drive, in contrast to TSS.
However, the robustness of TSS to collective emission

comes at a tradeoff to increased sensitivity to single-particle
dephasing. This decoherence intuitively adds excess noise
to the squeezed quadrature of the phase-squeezed state,
whereas for OAT it only contributes to the antisqueezed
quadrature. The time evolution of the squeezing for
γelt ≪ 1 is approximately [22],

ξ2TSS;γel ≈
1þ ΓNt
2Nβ

þ γelt; ξ2OAT;γel ≈
1þ 2γelt
2Nβ

þ ΓNt:

Here, the effectiveness of TSS and OAT become similar as
the role of single-particle dephasing and collective emis-
sion is interchangeable between the schemes. This is
reflected by again optimizing the cavity detuning, which
yields ξ2 ∼ ðNηelÞ−1=2 for both protocols where ηel ¼
4g2=ðκγelÞ [22]. It is thus clear that TSS is superior over
OAT in the limit where single-particle decoherence is
dominated by spontaneous emission, γs ≫ γel. Such a
regime is relevant as γs and Γ are fundamental sources
of decoherence, due to the finite transition linewidth and
engineering of the squeezing Hamiltonian respectively,
whereas γel is a technical barrier.
Conclusion.—We have proposed a squeezing protocol

which is intrinsically robust against the detrimental effects
of superradiance and thus particularly useful for the next
generation of quantum enhanced optical atomic clocks. Its
implementation could open a path to deliver significant
gains to sensors with real-world applications.
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