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We present a discrete-time, one-dimensional quantum walk based on the entanglement between the
momentum of ultracold rubidium atoms (the walk space) and two internal atomic states (the “coin” degree
of freedom). Our scheme is highly flexible and can provide a platform for a wide range of applications such
as quantum search algorithms, the observation of topological phases, and the realization of walks with
higher dimensionality. Along with the investigation of the quantum-to-classical transition, we demonstrate
the distinctive features of a quantum walk and contrast them to those of its classical counterpart. Also, by
manipulating either the walk or coin operator, we show how the walk dynamics can be steered or even
reversed.
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Quantum randomness is intrinsically different from
classical stochasticity since it is affected by interference
and entanglement. Entanglement is responsible for non-
local correlations [1] and is the resource of quantum
computing [2]. While the basic procedure for producing
a quantum walk (QW) can be outwardly similar to its
classical counterpart, the dynamics of a QWare completely
different and can lead to applications unavailable classi-
cally. Notably, QWs are intrinsically connected to quantum
search algorithms (see, e.g., [3]) and to quantum algorithms
in general [4,5].
Several different experimental QW schemes have been

implemented.Walks have been carried out with atoms [6–9],
ions [10,11], or photons [12–16]. As might be expected, the
variety of different possiblewalker species leads to thewalks
themselves taking on an assortment of different forms. For
example, walks with photons are most conveniently done in
the time domain [14,15] or more recently in angular
momentum [12], while for atoms and ions the walks are
usually performed in spatial [8,9] or phase [10,11] degrees of
freedom (d.o.f.). However, up to now, no experimental
realization of a QW has been reported in momentum space,
which wewill argue has several important benefits. Our QW
offers distinct advantages arising from the robustness of its
dynamics in momentum space and extendability to higher
dimensions [17–19] and many-body regimes [8,20,21].
The discrete-time QW we describe here consists of two

d.o.f.: thewalker’s space (momentumspace in our case) anda
“coin” which selects the path of the system through the
walker’s space. The key concept that differentiates a classical
walk from a QW is that in the latter case there exists a strong
entanglement between the d.o.f. This entanglement leads to

distinct behavior which is the result of the interference
between the multitude of paths that a walker may take
simultaneously in thewalk space. For example, this produces
one of the characteristic signatures of a QW, the appearance
of two peaks in the walk distribution that propagate ballis-
tically away from the origin as the walk proceeds.
In this Letter we demonstrate the principal features of

QWs resulting from interference and contrast them to the
behavior of a classical walk. Bymanipulating either thewalk
or coin operator we show how the walk can be biased or
reversed. Future applications can build on the implicit spin-
momentum coupling of our walk that is also a necessary
ingredient for studying topological effects [22–24].
The implementation of our QW is carried out with a

Bose-Einstein condensate (BEC) of 87Rb atoms in a pulsed
optical lattice. One of the major benefits of a momentum-
based QW is that it provides straightforward access to both
internal and external d.o.f. of the walker. In our system
these d.o.f. are two atomic hyperfine states and the center-
of-mass momentum of the atoms.
Each step of a discrete-time walk Ûstep ¼ T̂ M̂ consists

of a coin operator M̂ which produces a superposition of
two internal states, followed by a unitary shift operator T̂,
whose direction is determined by the internal state. We
realize the coin operator,

M̂ðα; χÞ ¼
�

cos ðα=2Þ e−iχsinðα=2Þ
−eiχsinðα=2Þ cos ðα=2Þ

�
; ð1Þ

using resonant microwave (MW) radiation that addresses
the internal d.o.f., the ground hyperfine level components
F ¼ 1, mF ¼ 0 and F ¼ 2, mF ¼ 0. Henceforth, these

PHYSICAL REVIEW LETTERS 121, 070402 (2018)
Editors' Suggestion Featured in Physics

0031-9007=18=121(7)=070402(6) 070402-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.070402&domain=pdf&date_stamp=2018-08-16
https://doi.org/10.1103/PhysRevLett.121.070402
https://doi.org/10.1103/PhysRevLett.121.070402
https://doi.org/10.1103/PhysRevLett.121.070402
https://doi.org/10.1103/PhysRevLett.121.070402


states are denoted by j1i and j2i, respectively. In a regular
coin toss operation, a π=2 MW pulse M̂ðπ=2;−π=2Þ
produces an equal superposition of internal states
1=

ffiffiffi
2

p ðj1i þ ij2iÞ at each step of the walk. To make the
direction of the walk contingent upon the internal d.o.f., we
apply the unitary shift operator,

T̂ ¼ exp ðiqθ̂Þj1ih1j þ exp ð−iqθ̂Þj2ih2j; ð2Þ

which changes the momentum by�q depending on whether
the atom resides in the internal state j1i or j2i. This produces
a strong entanglement between internal and external d.o.f.
at each step of the walk. In Eq. (2), q is an integer in units of
two-photon recoils ℏG (G ¼ 2π=λG with λG being the
spatial period of the pulsed optical lattice implementing
the momentum walk) and θ̂ ¼ x̂ mod ð2πÞ, where x̂ is the
dimensionless position operator. In the usual walk, q ¼ 1,
corresponding to nearest neighbor coupling in momen-
tum space.
As proposed in [25], our shift operator is a quantum

ratchet derived from the atom-optics kicked rotor (AOKR)
[26,27]. AOKR experiments work with ultracold atoms
subject to a series of short pulses of a 1D off-resonant
optical lattice (standing wave). Using dimensionless var-
iables, the dynamics of the AOKR are described by the
single-particle Hamiltonian [26],

Ĥðx̂; p̂x; tÞ ¼ p̂2
x=2þ k cosðx̂Þ

X
j∈Z

δðt − jτÞ; ð3Þ

where j counts the number of pulses, t and τ are the
dimensionless time and pulse period, and p̂x is the
rescaled momentum operator. The kick strength is
k ¼ Ω2τp=Δ, in which τpð≪ τÞ is the pulse length, Ω is
the Rabi frequency, and Δ is the detuning of the laser light
from the atomic transition. The evolution of the system
during the pulse and subsequent free evolution is given by
the Floquet operator Û p̂x;k ¼ ÛfÛk ¼ e−iτp̂x

2=2e−ik cosðθ̂Þ.
Here, Ûf signifies the free evolution between two pulses,
and Ûk ¼

P
mð−iÞm expð−imθ̂ÞJmðkÞ. The J’s are Bessel

functions of the first kind and represent behavior in which
each pulse leads to a symmetric diffraction of the wave
function in the space spanned by the momentum eigen-
states fjnig, n ∈ Z. To realize the simplest ratchets, the
dynamics of the AOKR should meet the quantum reso-
nance conditions [27]. This can be understood as the
Talbot effect (in the time domain) for matter waves
diffracted from a phase grating induced by a pulsed
optical standing wave [27]. The Talbot condition is
realized by choosing τ ¼ 4π for our dimensionless pulse
period in Eq. (3). Experimentally, a Talbot time must be
long enough to allow for the delivery of the coin-toss MW
radiation between the ratchet pulses.

A ratchet can be created by breaking the spatial-temporal
symmetry of the usual AOKR [27,28] through the choice
of a particular initial external state. Experimentally, the
simplest choice is 1=

ffiffiffi
2

p ðjn ¼ 0i þ eiϕjn ¼ 1iÞ realized
with a long pulse of the off-resonant standing wave (Bragg
pulse) on the original BEC (jn ¼ 0i) [29,30]. Subsequent
application of the AOKR to this state results in the average
momentum changing by an amountΔhp̂i ¼ −k sinðϕÞ=2 at
each AOKR pulse [27]. By choosing ϕ ¼ π=2 and jkj ∼ 2,
we either decrease or increase (depending on the sign of k)
the average momentum at each step of the AOKR (or now
ratchet) by one unit. Recall that k ∝ 1=Δ, so that with the
light detuned with positive Δ for j1i and negative Δ for j2i,
it is possible for the internal states to undergo simultaneous
ratchets in opposite directions.
In order to implement a standard quantum walk with j

steps, we apply the sequence ðÛstepÞj ¼ ½T̂ M̂ðπ=2;
−π=2Þ�j−1½T̂ M̂ðπ=2; πÞ� to the initial state jψ0i ¼ j1i ⊗
1=

ffiffiffi
2

p ðjn ¼ 0i þ ijn ¼ 1iÞ prepared by a Bragg pulse. The
first step includes the M̂ðπ=2; πÞ coin toss, the well known
Hadamard gate, that we use to prepare the internal states to
perform a symmetric walk. Our observable is the momen-
tum distribution, represented by the atomic population
of momentum states PðnÞ. When the state of the system
in momentum space after j walk steps is jψðjÞi ¼P

ncnðjÞjni, we measure the momentum distribution
Pðn; jÞ ¼ Pj1iðn; jÞ þ Pj2iðn; jÞ ¼ jcn;1ðjÞj2 þ jcn;2ðjÞj2,
containing the population distributions of both internal
states.
Figures 1(a) and 1(b) show experimental and simulated

results for the momentum distribution of our QW realized
with the shift operator strength jkj ¼ 1.45. Among various
realizations of QWs, this ratchet strength best matches the
standard QW by coupling neighboring momentum states
[with q ¼ 1 in Eq. (2)]. Thus, we employed this value of k
in the subsequent experiments. Overall, our QW realization
has the major features expected of an ideal QW, with a
momentum distribution which increases ballistically grow-
ing linearly with the number of steps j.
As a consequence of the relatively large range of walk

steps in our scheme, we are also able to observe the
quantum-to-classical transition by the addition of noise to
each coin toss. This noise takes the form of a controllable
randomization of the phase of each MW pulse. Figures 1(c)
to 1(f) demonstrate our experimental implementation of the
quantum-to-classical transition for several different
amounts of coin-phase noise; Fig. 1(c) represents the
standard QW of Fig. 1(a) with coin phases fixed at
χ ¼ −π=2. As mentioned, this QW is associated with the
characteristic standard deviation of the momentum distri-
bution ∝ j. Signatures of a classical walk start to emerge by
adding as little as 8% randomness (with uniform distribu-
tion) to these phases; see Fig. 1(d). Note how the ballistic
peaks become less prominent after a few steps and that a

PHYSICAL REVIEW LETTERS 121, 070402 (2018)

070402-2



Gaussian-like peak starts to emerge in the center. The
Gaussian distribution of the walk with the characteristic
standard deviation growing as ∝

ffiffi
j

p
is a manifestation of a

classical walk. The walk becomes dominantly classical
(Gaussian with no QW ballistic peaks) at 20% phase
randomness (e) and fully classical (f) when the phase is
uniformly randomized within a full 2π. The appearance of a
Gaussian-like peak as a result of the noise enhancement is

quite evident in Fig. 1(g), which presents the momentum
distributions at the eighth step of the walk.
Our protocol also permits us to investigate biased QWs

implemented through either a biased coin (BC) or via the
use of nonsymmetric walk steps (i.e., the walk’s left and
right shifts are not identical). We realize the former by
altering the power of the MW pulses from the π=2 scheme
so that unequal superpositions of internal states are
obtained. In the latter case, a biased ratchet (BR) is
achieved by detuning the ratchet laser so that the laser
frequency is no longer halfway between the ground state
hyperfine levels. Since the ratchet strength is inversely

FIG. 1. Experimental (a) and simulated (b) momentum distri-
butions of our standard QW realized with jkj ¼ 1.45. Each time
(kick #) represents one step of the walk, i.e., one realization of the
experiment (or simulation). The amorphous population signal
about the center of the momentum distribution in (a) is a residual
atomic thermal cloud that, unlike the BEC, does not respond to
the ratchet. The middle panels represent the quantum-to-classical
transition: the standard QW (c) was conducted with a fixed coin
toss phase. Signatures of a classical walk emerge at 8% phase
noise (d). The walk is dominantly classical when randomizing the
phase by 20% (e) and becomes fully classical when the phase is
allowed to vary randomly within 2π (f). Panel (g) shows the
evolution of momentum distribution pattern at the eighth step of
the walk for the corresponding noise levels.

FIG. 2. Experimental (a) and simulated (b) momentum distri-
butions of the steered walk for a BC with jkj ¼ 1.45. Here the
coin tosses were changed so as to produce the internal stateffiffiffiffiffiffi
0.7

p j1i þ ffiffiffiffiffiffi
0.3

p
ij2i rather than ffiffiffiffiffiffi

0.5
p ðj1i þ ij2iÞ. Panels (c) and

(d) demonstrate the experimental and simulated BR steered walks
with an unbiased coin and k1 ¼ −1.7, k2 ¼ þ1.0 instead of
k1 ¼ −1.45, k2 ¼ þ1.45. (e) Shows the experimental (E.) and
simulated (S.) variation of the mean momentum for BC and BR
walks compared to the symmetric walk (SW).
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proportional to the detuning, this shift in the frequency
results in unequal ratchet potentials for each state.
Figure 2 demonstrates the experimental and simulated
results of the steered walks for both BC and BR cases. As
can be inferred, both the direction and speed of the walk
can be manipulated by biasing the coin and ratchets in
these ways. The controllability of the walk direction is
particularly interesting for matter-wave interferometry
and quantum search applications.
Two of the principal features of QWs that distinguish

them from their classical counterparts are a unitary evolution
and an entanglement between the internal and external d.o.f.
These properties can be used to reverse a QW so as to
retrieve the initial state of the system. We realize such a QW
reversal by applying the Hermitian conjugates of the steps
taken; i.e., Û†

step ¼ M̂†T̂†. The results of our QW reversal are
shown in Fig. 3. Our reversible QW could be of use in atom
interferometry. The interference signal of the recombining

momentum currents is determined by their phase difference
and can be used as a sensitive measure of any perturbation
affecting the phase of the system. The ideal dynamics of the
walk and hence the fidelity of reversal is also sensitive to
nonideal quasimomenta (not fulfilling the quantum reso-
nance conditions necessary for the ratchet dynamics
[27,30,31]) and the amount of thermal cloud in the BEC.
We have reported on the realization of a fully controllable

QW in momentum space with ultracold 87Rb atoms. With
our present setup, we can experimentally implement QWs
up to 20 steps, a range which is sufficiently large to observe
the quantum-to-classical transition. This can be improved by
relatively minor changes to our atom detection system so that
a wider range of momenta can be observed, possibly up to
the order of about 100 momentum classes before other
experimental limitations become important. The latter
include a breakdown of the Raman-Nath regime because
of the finite pulse width [32–34], decoherence by sponta-
neous emission [35], and vibrations of the optical setup.
QWs with less diffusion between the ballistically spreading
momentum currents could be achieved through the choice of
an initial state composed of more momentum states [30].
We can control the directionality of our walks by manipu-

lating the superposition of the internal states (BC) or by
changing the relative detunings from the hyperfine levels
(BR). This should allow for the compensation of probable
biases in the dynamics of the quantum transport. Moreover,
owing to the unitary nature of the QW and the entanglement
between the internal and external d.o.f., we are able to reverse
the walk. Using this feature, we can retrieve the quantum
information encoded in previous steps of the walk or even
recover the initial state of the system. This reversible QW
may also be useful as an atomic interferometer since the
reversibility is extremely sensitive to phases [6,7,12,36,37].
As a result of the fact that the QW takes place in

momentum space [30,36,37], our walk should be readily
extendable to higher dimensions [17–19]. Multidimensional
walks could be implemented using lattices with more than a
single spatial dimension, or perhaps more straightforwardly,
by the introduction of additional spatial frequency compo-
nents to the one-dimensional lattice that is the basis of the
momentum shift operator. Because of the BEC nature of our
walker, unlike the single-particle systems [9–11,13], our
study can be extended to realize many-body walks by taking
atom-atom interactions [8,20,21] into account. Further
applications in driven walks [38,39] and quantum algo-
rithms, e.g., searches of marked momentum states, as in [19]
but by adjusting the coin degree, seem possible.
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