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We identify sufficient conditions on the structure of the interaction Hamiltonian between a two-level
quantum system and a thermal bath that, without any external drive or coherent measurement, guarantee the
generation of steady-state coherences (SSC). The SSC obtained this way, remarkably, turn out to be
independent of the initial state of the system, which could therefore be taken as initially incoherent. We
characterize in detail this phenomenon, first analytically in the weak coupling regime for two paradigmatic
models, and then numerically in more complex systems without any assumption on the coupling strength.
In all of these cases, we find that SSC become increasingly significant as the bath is cooled down. These
results can be directly verified in many experimental platforms.
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Standard textbook quantum mechanics deals with closed
systems and their coherent unitary evolution. However,
every realistic quantum system has to be considered as
open in light of its unavoidable interactionwith its surround-
ings. The resulting reduced nonunitary system takes into
account irreversible processes, such as decoherence and
dissipation [1,2]. The former, especially, still remains among
the major obstacles to all of the countless applications
relying on the maintenance and exploitation of quantum
coherences, ranging from quantum metrology [3] and state
engineering [4], to even relatively far fields such as quantum
thermodynamics [5] and quantum biology [6,7]. Because of
this prominence, a lot of effort thus has been devoted to
conceive strategies to oppose or even neutralize the detri-
mental effects of environmental couplings, e.g., error-
correction schemes [8], dynamical decoupling [9], and
quantum feedback control [10], just to mention a few.
Currently, the theory of coherence represents a wide

research field, encompassing theoretical developments of a
resource theoryof coherences [11], characterizationof suitable
quantifiers and measures of coherence [12], investigation of
coherence dynamics [13] and experimental applications [14].
Recently, it was also shown that, under specific conditions on
the parameters determining the dynamics, a spin undergoing a
pure-dephasing evolution may, in the long-time dynamics,
retain some of its initial coherences in the energy eigenbasis
[15–17]. In particular, Addis et al. provided a clear-cut
connection between this phenomenon, which they named
coherence trapping, and the properties of the environmental
spectrum [16]: while its temperature and low-frequency part
determines the partial survival or complete erasure of the initial
coherences, its high-frequency band dictates their maximum
attainable amount.
The main limitations of such a result are twofold.

The first one is that it relies on the specific model and

interaction considered, i.e., a pure-dephasing spin boson
[2]. When more general dissipative spin-boson dynamics
are taken into account [18], i.e., when the interaction
does not commute anymore with the system’s bare
Hamiltonian, all of the coherences inevitably vanish in
the long-time limit, irrespective of the type of environment
considered. Individual attempts at generalizing this result
and extending it to other models have been pursued in
[19], where qubit states initially correlated with the
environment were considered, and in [20], where a slow
down of the coherences decay was characterized for two
qubits interacting with a harmonic oscillator. In both cases,
however, additional resources to achieve steady-state
coherences (SSC), such as initial correlations or a medi-
ating system, were employed. The second fundamental
limitation is its initial-state dependence: coherence trap-
ping dictates a way to preserve, by means of clever
engineering of the environment, a fraction of initial
coherences which, if not present, are not thus generated
by this process. This process thus requires state prepara-
tion of a coherent superposition.
In this Letter, we aim to remove these two significant

constraints and instead provide sufficient conditions con-
cerning the structure of the system-bath interaction
Hamiltonian that guarantees the formation (and not mere
trapping) of SSC in a generic two-level system, independent
of its initial state. In this case, no additional systems, state
preparations, or measurement procedures are required. It is
well known that quantum coherence can be induced by
means of external classical driving [21] or by coherent
measurement [22,23]. The only resource we employ here
are composite unitary system-bath dynamics, achievable in
many experimental platforms. In particular, we will give
conclusive evidence of the following statement (see also the
schematics in Fig. 1).
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Observation: Consider a two-level system interacting
with a single thermal environment, such that the total
Hamiltonian is H ¼ HS þHE þHSE. The interaction
Hamiltonian HSE is considered to be a Hermitian operator
of the form HSE ¼ P

jOS;j ⊗ bE þ H:c:, with OS;j denot-
ing system’s operators and bE ¼ P

kgkbk denoting the
multimode environmental annihilation operator.
Let HkHS

SE ≡ h−1S TrS½HS
P

jOS;j�HS ⊗ bE þ H:c: (with
hS ≡ TrS½H2

S�) denote the projection of the interaction
Hamiltonian parallel to HS (according to the Hilbert-

Schmidt scalar product [2]), and let H⊥HS
SE ≡HSE −HkHS

SE
denote its orthogonal complement.
If the interaction Hamiltonian has both nonzero projec-

tions over the parallel and orthogonal components with
respect to HS, i.e., if HSE ¼ HkHS

SE þH⊥HS
SE , then the two-

level system will show SSC with respect to the eigenbasis
of HS, independent of the initial state.
Moreover, we will show that the SSC generated this way

can be generically enhanced simply when the bath is cooled
down, and that they decay slowly with increasing temper-
ature, thus ensuring their possible observation even for a
nonzero temperature in experimental setups. These results

apply to a wide class of systems and interaction
Hamiltonians, and here, we will explicitly provide a
paradigmatic analysis for experimentally relevant examples
of them. The implications of this result pave the way for
optimization of the system-bath interaction in experimental
platforms in order to achieve autonomous SSC.
Let us start by considering a two-level system coupled to

a thermal bosonic bath such that the total Hamiltonian is
given by

H ¼ ω0

2
σz þ

X
k

ωkb
†
kbk þ ðf1σz þ f2σxÞ ⊗ BE; ð1Þ

with σx;y;z being the usual Pauli matrices, BE ¼ P
kgk

ðbk þ b†kÞ representing the multimode quadrature operator,
with fb†k; bkgk denoting the family of bosonic creation and
annihilation operators, and f1;2 being two generic coupling
constants independent on the bath modes k. We stress again
that the crucial point is that the system-bath interaction
Hamiltonian satisfies the condition stated in the

Proposition. The parallel projection HkHS
SE ¼ f1σz ⊗ BE

induces pure dephasing dynamics on the reduced system,
while the orthogonal projection H⊥HS

SE ¼ f2σx ⊗ BE will
generate dynamics involving both populations and coher-
ences of the two-level system [2,18]. In the following
calculations, we will assume the system and the environ-
ment to be weakly coupled and starting in a product state
ρSEð0Þ ¼ ρSð0Þ ⊗ ρβ, with ρβ ≡ Z−1e−βHE being the Gibbs
state at inverse temperature β ¼ ðkBTÞ−1 (Z ¼ TrE½e−βHE �,
HE ¼ P

kωkb
†
kbk). When f2 → 0, we retrieve pure dephas-

ing dynamics [2], while for f1 → 0, the evolution retraces
the usual decoherent dynamics of a dissipative spin-boson
[2,18,24]. By means of standard techniques (i.e., time-
convolutionless expansion of the dynamical generator up to
second order in the coupling constant [2]), we derived a
time-dependent non-Markovian master equation for the
system’s density operator, and then, from the latter, we
obtained the equations of motion for the three components
of the Bloch vector vðtÞ, defined through the relation
ρSðtÞ ¼ 1

2
ð12 þ vðtÞ · σÞ, with vx;y;zðtÞ ¼ TrS½σx;y;zρSðtÞ�.

In particular, v3ðtÞ gives the population imbalance of the
qubit while v1;2ðtÞ denote the real and imaginary parts of
coherences in the σz basis, respectively. The interested
reader is referred to the Supplemental Material [25] (SM,
Section A) for a detailed derivation and additional com-
ments concerning the dynamics of such a system.
Since for many practical purposes it is easiest to exploit

the steady-state properties of a system, we have focused on
the long-time limit. The resulting steady-state solutions for
v1;2 characterize SSC, and they turn out to be given by [see
the SM, Eq. (42)]

v̄1¼
f1f2½Δ1 tanhðω0

2TÞþ4λΩΓðsÞþΔ2�
ω0þf22Δ1

; v̄2¼ 0; ð2Þ

FIG. 1. A two-level system is put in contact with a thermal bath
until the steady state is reached. The steady-state solution is
shown in the right column using a xz planar section of the Bloch
sphere, where, for illustrative purposes, we have assumed the
coherences to be real. In the case of a interaction parallel to HS,
(a) the steady-state solution is an incoherent state depicted on the
z axis (yellow points), relative to a final energy which is equal to
the initial one. In the case of an interaction orthogonal to HS,
(b) the system will thermalize with the bath and SSC will not be
present, its steady state thus again being given by a point on the z
axis determined by the Boltzmann factor relative to the temper-
ature T. However, when the interaction is a linear combination of
parallel and orthogonal interactions, (c) the steady state solution
acquires a deviation from the thermal state, due to the formation
of coherences, which is in general increasingly pronounced as
long as the bath is cooled down.
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where ΓðxÞ is the Euler’s function and where we have
defined (omitting for brevity their parameter dependence)

Δ1ðT;ΩÞ¼−2
Z þ∞

0

dωJeffðΩ;TÞ
�
P

1

ωþω0

−P
1

ω−ω0

�
;

Δ2ðΩÞ¼−2
Z þ∞

0

dωJðωÞ
�
P

1

ωþω0

þP
1

ω−ω0

�
; ð3Þ

with P standing for Cauchy principal value, JðωÞ denot-
ing the spectral density of the bath, and Jeffðω; TÞ≡
JðωÞ coth ½ðω0=2TÞ� being the so-called effective spectral
density [24]. The former has been taken to be of the
general Ohmic-dependent form JðωÞ ¼ λðωs=Ωs−1Þe−ω=Ω,
with λ being a coupling constant, Ω the cut-off frequency,
and s the Ohmicity parameter ruling over the low-
frequency behavior. The latter is known to lead to a
sub-Ohmic spectrum for s < 1, to an Ohmic one for
s ¼ 1, and finally, to a super-Ohmic spectrum for s > 1
[18]. As can be immediately seen from Eq. (2), if either
one of the two couplings f1;2 goes to zero, v̄1 vanishes.
It is then the simultaneous presence of both terms in the
interaction Hamiltonian (1) that guarantees the occurrence
of SSC. Moreover, it is worth pointing out that the reason
why only v̄1 has survived in the steady state while v̄2 ¼ 0
is only due to the specific choice of the structure of
Eq. (1), whose orthogonal projection H⊥HS

SE was propor-
tional to σx. An exchange σx → σy in such an interaction
Hamiltonian produces a corresponding nonzero value of
v̄2 and v̄1 ¼ 0.
Finally, it is central to notice that the result in (2) is

remarkably independent of the initial state of the system.
This draws a neat line of distinction with the previous
phenomenon of coherence trapping studied, e.g., in [16].
While in their case, an opportunely engineered environ-
ment and interaction was exploited in order to make a
fraction of the initial coherences to survive the dephasing
process (due to the damping coefficient going to zero in a
finite time interval), in our case nonzero SSC have been
built up even in the case that the system starts in an
incoherent state. We emphasize that the generation of such

SSC stems purely from the system-bath interaction, and it is
thus autonomous, in the sense that no coherent driving or
measurement is introduced in the scheme.
To further discuss the above result, and in light of

comparisons in the subsequent models, we will employ
the l1− norm of coherence C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̄21 þ v̄22

p
, first introduced

in [27], which can be shown to satisfy all of the properties
to be considered as a valid coherence measure [28]. First of
all, one can immediately notice that v̄1 is linear in f1, i.e.,
the strength determining the dephasing, and so C will be
given in units of it. It is important to keep in mind, however,
that the range of f1 remains firmly limited by the weak-
coupling condition according to which λf1;2 ≪ ω0 [2]. The
maximum of C with respect to f2 can be instead analytically
calculated, and thus one obtains

max
f2

C=f1 ¼
���� ½Δ1 tanhðω0

2TÞ þ 4λΩΓðsÞ þ Δ2�
2

ffiffiffiffiffiffiffiffiffiffiffi
ω0Δ1

p
����: ð4Þ

Two important general features of Eq. (4), with respect to
Ω and T, can be seen to be generally valid, irrespective of
the Ohmicity parameter s. First of all, for any fixed value of
the temperature, the coherence measure turns out to be a
nondecreasing function of the cutoff frequency Ω. This is
because, in this model, a larger Ω reflects a higher value of
Jðω0Þ. More interestingly, it turns out that the SSC are
progressively enhanced as the bath is cooled down, reach-
ing its maximum (as a function of T for any fixed Ω) for
T → 0. On the other side, they are found to vanish in the
high-temperature limit, consistent with the intuition that a
more “classical” hot bath prevents the observation of such
phenomenon. However, remarkably in view of experimen-
tal applications, the decay of generated SSC with increas-
ing T is slow, thus allowing for their observation even at
nonzero bath temperatures. Alongside these general proper-
ties, the remaining parameter s ruling over the low-
frequency shape of the spectrum induces a different
behavior of Eq. (4), whether s ≤ 1 or s > 1. For further
details, see Sec. A.4 of the SM.
The Ohmic and sub-Ohmic cases.—Performing a first-

order Taylor expansion of the integrands of (3) around

(a) (b) (c)

FIG. 2. Temperature dependence of SSC: (a) Eq. (4) for λ ¼ 10−2ω0, and cut-off frequency Ω ¼ 5ω0; (b) Eq. (78) of the SM for the
same choice of parameters; (c) the coherence measure C for different couplings κ between the qubit and its effective bath, namely a
harmonic mode, in turn coupled to a thermal bath (solid lines), and a spin chain in turn coupled to a thermal bath (dashed lines), see
Section E of the SM.
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ω ¼ ω0, allows us to realize that there is a pole of the first
order in these along the so-called resonance curve [24],
implicitly defined by the condition ∂ωJeffðω; TÞjω¼ω0

¼ 0.
The resonance curve physically indicates a match between
the system’s frequency ω0 and the frequency ωmax for
which the spectrum reaches its maximum, i.e., such that
∂ωJeff ¼ 0. When such a dominant environmental fre-
quency ωmax coincides with ω0, i.e., is resonant with the
system, then the system practically interacts with a locally
flat spectrum, the latter notoriously leading to a Markovian
dynamics [24]. The enhancement of SSC along the
resonance curve can be seen in Fig. 2(a), where the “spike”
of (4), plotted as function of the bath temperature T for a
fixed Ω ¼ 5ω0, is located on a point of that curve. The
resonance curve thus allows a relatively higher coherence
for the same f1 and optimized f2. The sub-Ohmic case
does not qualitatively differ from the Ohmic case, as the
resonance condition highlighted above still plays the same
role here; see the red curve in Fig. 2(a). A more thorough
discussion can be found in Section A.4 of the SM.
Super Ohmic case.—The singular behavior of the

integrand of Δ1;2 in Eq. (3) disappears when s ≥ 2. The
coherence measure consequently shows a more regular
behavior, as shown by the absence of resonance peaks of
the blue line in Fig. 2(a), which refers to the case s ¼ 3. It is
worth mentioning that such a spectral density is of
prominent importance in the context of polarons, when
defects or electron tunneling in a solid coupled to a three-
dimensional phononic bath is considered [18].
Since many physical systems, especially in quantum

optics, are described by interaction Hamiltonians in the so-
called rotating wave approximation (RWA), we now
reconsider the same two-level system and bosonic bath
as above, but this time coupled according to

HSE ¼ f1σz ⊗ BE þ f2ðσþ ⊗ bE þ σ− ⊗ b†EÞ; ð5Þ

with BE ¼ bE þ b†E and bE ¼ P
kgkbk. We emphasize that

the interaction in Eq. (5), despite being in a RWA, still
satisfies the Observation. Performing the same master-
equation based analysis, in this case we also obtain nonzero
SSC, which remarkably shows the same qualitative features
and behavior as in the previous model (see Sec. B of the SM
for quantitative results and discussions). The behavior of
the maximum coherence measure as a function of the bath
temperature T is shown in Fig. 2(b), for the same values of
Ω and s used for the previous model in Fig. 2(a). A
comparison between the two plots immediately shows that
the general trend of SSC to increase when T decreases is
also found in this model. At variance with the previous
case, however, all of the singular behavior of the steady
state complements v̄1;2 at the resonance frequency ω0 and is
removed for every value of s, as detailed and discussed
in Sec. B.4 of the SM. This reflects in the absence of

enhancement peaks of SSC, even for Ohmic or sub-Ohmic
spectral densities.
To provide a complete picture, we have further inves-

tigated what happens if we split the two projections

HkHS;⊥HS
SE of an interaction Hamiltonian of the form

Eq. (1) and attribute them to two separate independent
thermal baths attached to the system (their temperature
being arbitrary and eventually different), neither of which
will therefore satisfy the Observation. It turns out that in
this case, all SSC vanish (see Sec. C of the SM), this clearly
indicating that the SSC obtained above cannot be equiv-
alently generated through alternate sequences of inter-
actions with independent baths, each one not generating
SSC. On the other hand, remarkably, we have checked that
the generation of SSC by means of an interaction
Hamiltonian of the suitable structure evidenced, e.g.,
Eqs. (1) and (5), are robust even in the presence of an
additional dephasing channel on top of it (see Sec. D of the
SM). This represents an important support to the feasibility
of an eventual experimental test of such theoretically
predicted phenomenon, as in many physical situations
there often is an unwanted secondary environment.
Equilibration picture.—An alternative approach, with

respect to the master-equation-based one, can also be
pursued through the equilibration theory. The latter is
based on the strong suggestion, widely assumed in the
community of closed quantum many-body systems, that
quantum systems coupled to a large thermal bath should
equilibrate with it, so that the stationary state is given by
the local reduced state of the global Gibbs state, i.e.,
ρS ¼ TrE½Z−1e−βH�, with Z ¼ TrSE½e−βH� [29,30]. The
global Gibbs state differs from the local Gibbs state due
to the presence of the interaction Hamiltonian. While being
particularly enhanced in the strong coupling regime, even
in the weak-coupling regime the corrections to the thermal
state e−βHS=TrS½e−βHS � can become significant [31,32].
This approach allows us to characterize only steady-state
properties, and moreover, it can work only when the system
is coupled to a single thermal bath inducing equilibration.
Nevertheless, it proves extremely useful in order to char-
acterize SSC even in strongly coupled systems as well as
more complex many-body systems. First of all, we have
then employed a perturbative expansion up to the second
order in the coupling strength of the local reduced state of
the global Gibbs state, in the same spirit as done in [33],
for the model described by Eq. (1) (see the SM, Sec. E).
The results obtained through this different approach have
notably confirmed all of the above conclusions.
Finally, we employed the equilibration method to access

SSC in different models. In particular, we have first
considered a qubit, the subsystem of interest, coupled to
a harmonic oscillator through an interaction having the
crucial composite structure, put in evidence in this work
and equilibrated by means of an interaction with a thermal
reservoir. Subsequently we also studied the case where the
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role of the harmonic oscillator is taken by another two-level
system; the reader is referred to Sec. E of the SM for all of the
details. In both cases, a fully numerical approach has been
pursued, and thus no weak coupling assumption has been
invoked. In Fig. 2(c), we show the temperature dependence
of the coherence measure C for different values of the
coupling strength κ. Solid lines refer to the first model [with
the Hamiltonian given by Eq. (107) of the SM], while dashed
lines refer to the second one [with the Hamiltonian given by
Eq. (108) of the SM]. A comparison between the curves in
Figs. 2(a), 2(b), and 2(c) shows a great consistency in the
behavior of SSCwith respect toT, namely its enhancing for a
cold bath, thus supporting the feasibility of the formation of
SSC for different experimental situations. Finally, this trend
of SSC is, remarkably, left significantly unchanged even
outside theweak coupling regime, as highlighted in Fig. 2(c)
by the choice κ ¼ 0.5ω0.
In conclusion, we have provided sufficient descriptions

concerning the structure of the interaction Hamiltonian that
allows the formation of steady-state coherences in a generic
two-level quantum system coupled to a generalized thermal
bath. The SSC obtained this way are remarkably indepen-
dent of the initial state of the system, so that this scheme
can be used to obtain coherences even from an initially
purely incoherent system state, and they are generally
enhanced as the bath temperature is lowered. Interesting
outlooks range from theoretical to experimental. On the
experimental side, the results presented in this Letter spur
the immediate possibility of generating and observing
autonomous SSC, for the first time, in many platforms,
such as trapped ions [34,35] or superconducting circuits
[36–40]. On the other hand, it will be interesting to
investigate the generalization to higher dimensional sys-
tems and the situation where two thermal baths at different
temperatures are attached to the system through interaction
Hamiltonians all of the composite form as, e.g., in Eq. (1)
or Eq. (5), thus leading to a nonequilibrium steady-state
solution (NESS).
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