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This Letter uses density functional, dynamical mean field, and Landau-theory methods to elucidate the
interplay of electronic and structural energetics in the Mott metal-insulator transition. A Landau-theory free
energy is presented that incorporates the electronic energetics, the coupling of the electronic state to local
distortions and the coupling of local distortions to long-wavelength strains. The theory is applied to
Ca2RuO4. The change in lattice energy across the metal-insulator transition is comparable to the change in
electronic energy. Important consequences are a strongly first order transition, a sensitive dependence of the
phase boundary on pressure and that the geometrical constraints on in-plane lattice parameter associated
with epitaxial growth on a substrate typically change the lattice energetics enough to eliminate the metal-
insulator transition entirely.
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Many materials exhibit “Mott” metal-insulator transi-
tions, primarily driven by electron-electron interactions [1]
but also involving changes in atomic positions. In the rare
earth titanates and vanadates, the distortion associated with
the insulating phase is a GdFeO3-type octahedral rotation
[2,3], in the rare earth manganites, it is an approximately
volume-preserving even-parity octahedral distortion [4–6]:
in the perovskite nickelates, a two sublattice disproportio-
nation of the mean Ni─O bond length [7–10] and in VO2 a
V─V dimerization [11]. In other materials including
Ca2RuO4 [12] and V2O3 [13] the metal-insulator transition
occurs simultaneously with a crystal symmetry-preserving
change of atomic positions. The association of metal-
insulator and structural transitions suggests the possibility
of tuning electronic behavior by strain [14], epitaxial
growth, or “nonlinear phononic” effects arising from
intense terahertz radiation [15–17].
While electronic aspects of the Mott transition are

becoming well understood, and energies, forces, and
many-body structural relaxation are now available in
beyond density functional frameworks such as the density
functional plus dynamical mean field methodology
[18–20], the interplay between the lattice and electronic
energetics has yet to be fully unraveled. A physical basis for
interpreting the calculations and the experiments remains to
be defined and the magnitude of the lattice contribution to
the energetics of the transition has yet to be determined.
Here we argue that the key point is that the electronic
transition couples directly to local atomic configurations
such as octahedral rotations and transition metal-oxygen
bond lengths, which in turn couple directly to externally
controllable variables such as strain and pressure. The
response of the material to these stresses defines a lattice

stabilization energy, which can in fact be large enough to
dominate the energetics of the transition.
To quantify these effects we write an electronic free

energy FaðδQ⃗Þ that depends on a state variable a labeling
whether the material is in the metallic or insulating phase,
and on atomic coordinates, labeled by a vector δQ⃗
expressing deviations of atomic positions from a reference
configuration. Expanding in δQ⃗ we obtain

FaðδQ⃗Þ ¼ Fa
0 þ F⃗ a · δQ⃗þ 1

2
δQ⃗T ·Ka · δQ⃗þ…: ð1Þ

The electronic state-dependent linear term F⃗ a specifies the
force exerted by the electronic state on the atomic degrees
of freedom (d.o.f.). Typically F⃗ couples only to a subset of
the lattice d.o.f., but this subset is coupled to other lattice
coordinates by the quadratic restoring term K. The ellipsis
represents anharmonic terms that are not needed for the
considerations of this Letter but may be important in other
circumstances [4,21].
Minimizing the terms written in Eq. (1) gives F ¼

Fa
0 −

1
2
F⃗ aT ·K−1 · F⃗ a defining the stabilization energy

Fa
stabil ¼ −

1

2
F⃗ aT ·K−1 · F⃗ a; ð2Þ

so that if the lattice is free to relax, the transition between
phases a ¼ 1, 2 will occur when F1

0 þ F1
stabil ¼ F2

0 þ F2
stabil

corresponding to a shift in the transition point relative to a
frozen lattice calculation and a lattice change across the
transition δQ⃗1 − δQ⃗2 ¼ −K−1ðF⃗ 1 − F⃗ 2Þ.

PHYSICAL REVIEW LETTERS 121, 067601 (2018)

0031-9007=18=121(6)=067601(6) 067601-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.067601&domain=pdf&date_stamp=2018-08-08
https://doi.org/10.1103/PhysRevLett.121.067601
https://doi.org/10.1103/PhysRevLett.121.067601
https://doi.org/10.1103/PhysRevLett.121.067601
https://doi.org/10.1103/PhysRevLett.121.067601


We now apply these generic considerations to Ca2RuO4,
which exhibits a correlation-driven paramagnetic metal to
paramagnetic insulator transition as the temperature is
decreased below a critical value about 350 K [12]. The
transition is accompanied by a large amplitude, symmetry
preserving lattice distortion [22,23]. Below about 140 K
there is an onset of antiferromagnetic order [22,23], which
is not relevant to our present considerations. Ca2RuO4

crystallizes in a Pbca-symmetry structure with four formula
units in each crystallographic unit cell. The basic structural
unit is the Ru─O6 octahedron; these form corner-shared
planes separated from adjacent Ru─O6 planes by layers
involving Ca atoms. The left panel of Fig. 1 shows one unit
cell with four formula units. The Pbca structure is derived
from the ideal tetragonal n ¼ 1 Ruddlesden-Popper struc-
ture by rotations of the Ru─O6 octahedrons about the
apical Ru─Oð2Þ bonds, tilts of this axis with respect to the
Ru─Oð1Þ plane, as well as an additional distortion that
makes the two in-plane Ru─O bond lengths slightly
different. The apical [Ru─Oð2Þ] and the average over
the two in-plane directions [Ru─Oð1Þ] Ru─O bond lengths
are the crucial variables in the electronic energetics. Their
values across the metal-insulator transition are presented in
Table I. The bond lengths continue to evolve as temperature
is further lowered through the insulating phase [22,23]. The
corner-shared structure implies that if the rotation angles
remain fixed, the Ru─Oð1Þ bond lengths predict the
average in-plane lattice parameters. Density functional
calculations show that changes in the rotation angles are
negligible for reasonable strains [24], so the in-plane
Ru─Ru and Ru─Oð1Þ distances are not independent
variables. On the other hand, the c-axis stacking of the

Ruddlesden-Popper structure means that at fixed c-axis
lattice constant, changes in the Ru─Oð2Þ bond length can
be accommodated by a buckling of the Ca─O planes.
We will be interested here in structures where the c-axis

lattice parameter is relaxed for given values of the octahe-
dral bond lengths. Thus the lattice d.o.f. in our theory are
the average Ru─Oð1Þ and Ru─Oð2Þ lengths. We para-
metrize the Ru─O bond lengths in terms of changes δx, δy,
δz with respect to a reference state, which we take to be the
400 K metallic state, and we express these in terms of the
octahedral coordinates

δQ0¼
1ffiffiffi
3

p ðδzþδxþδyÞ; δQ3¼
1ffiffiffi
6

p ð2δz−δx−δyÞ; ð3Þ

which we assemble into the vector δQ⃗ ¼ ðδQ3; δQ0Þ. K in
Eq. (1) is defined from the dependence of energies on δQ3

and δQ0, with the c-axis lattice constant relaxed for each
value of δQ⃗. We used density functional plus U (DFTþ U)
calculations and observed phonon frequencies (which give
energetics of Ru─O bond length changes without lattice
relaxation) to estimate the entries of K (see Supplemental
Material [24]), finding K33 ¼ 17.7, K03 ¼ 7.6, K00 ¼
46.2 eV=Å2 per formula unit. The observation [29–31]
that the changes in optical phonon frequencies across the
transition are about 2%, justifies the harmonic approxima-
tion and the independence of K on the electronic phase.
We now turn to the electronic d.o.f. The relevant frontier

electronic states are t2g-derived Ru─4d oxygen 2p anti-
bonding states which we refer to as Ru d states, following
standard practice [32–36]. The t2g-derived bands are well
separated from the other bands, so we may focus our
treatment of the correlation problem on them, treating the
other bands as inert [34–36]. The tetragonal symmetry
splits the t2g-derived triplet into a singlet (dxy) and a doublet
(dxz and dyz). The octahedral rotations and other distortions
(angles ∼10°) provide small additional rearrangements of
the level structure (in particular lifting the xz=yz degen-
eracy), but as long as the orbitals are defined with respect to
the local octahedral symmetry axes, the deviations from the
perfectly tetragonal structure do not significantly affect the
on-site level splitting, basic energetics, or assignment of
orbital character. Spin-orbit coupling (λSOC ≈ 0.1 eV) is

FIG. 1. Left panel: Representation of the unit cell of Ca2RuO4.
Gray balls are ruthenium atoms, red balls oxygen atoms, and blue
balls calcium atoms. Right panel: Orbitally resolved many-body
densities of states for structures interpolating between experi-
mental 295 and 400 K structures. Upper panel: xy orbital; lower
panel: yz orbital (xz is very similar). α ¼ 0 is the 295 K structure;
α ¼ 1 is the 400 K structure; α ¼ 0.4 is in the metallic phase but
very close to the transition point; the α ¼ 0.6, 0.8 spectra are very
similar to the 400 K spectra and are omitted for clarity.

TABLE I. Experimentally determined apical [Ru─Oð2Þ] and
average in-plane [Ru─Oð1Þ] bond lengths and octahedral dis-
tortions [Eq. (3)] in Å at T ¼ 295 [22] and 400 K [23], and
occupancy (per spin per atom) of xy (nxy), and average of yz,
zx (n̄yz=zx) orbitals from DMFT calculation using the experi-
mentally determined lattice structures at each temperature.

RuO(2) RuO(1) δQ0 δQ3 nxy n̄yz=zx

400 K 2.042 1.95 0.0 0.0 0.671 0.665
295 K 1.995 1.99 0.0196 −0.069 0.982 0.508
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important for lower T magnetic properties of the insulating
state [31,37,38] but is not relevant to the physics we
consider here since the spin-orbit energy scales are small
compared to the orbital level splitting and electron
interactions.
We have performed DFT and DFTþ DMFT calculations

(see SupplementalMaterial [39]).We find, in agreementwith
previous work [34], that a calculation at room temperature
with the experimentally determined400Kstructure produces
a moderately correlated metallic solution while using the
295 K structure produces a Mott insulator. The metallic state
is characterized by an approximately equal occupancy of the
three t2g orbitals. The approximately equal orbital occupancy
is not protected by any symmetry and is due to the strong
electron-electron scattering. The insulating state is orbitally
disproportionated,with an essentially fully filled xy band and
half filled,muchnarrower, xz=yz bandswith upper and lower
Hubbard bands separated by a gap (Fig. 1 right panel with
blue dashed lines). Calculated orbital occupancies are given
in Table I.
The right-hand panels of Fig. 1 present the orbitally

resolved densities of states obtained from DFTþ DMFT
calculations at room temperature, performed for a series of
structures linearly interpolated between the T ¼ 295 (α ¼ 0)
and T ¼ 400 K (α ¼ 1) structures. As the interpolation
parameter α changes from 1 to 0.4, the state remains metallic
but the bands and occupancies (nxy, nxz, nyz) change from
≈ð4=3; 4=3; 4=3Þ to ≈ð5=3; 7=6; 7=6Þ. A first order MIT
occurs as α is decreased below a critical value ≈0.4. Further
changes of structure within the insulating phase (α ¼ 0, 0.2)
do not affect the orbital occupancies but do lead to an
approximately 0.1 eV shift upward of the xz=yz band relative
to the xy band.We have also performed calculations inwhich
one starts from theDFTþ U relaxed insulating phase atomic
positions with in-plane lattice constants fixed to 5.44 Å and
the c-axis parameter is then gradually stretched. The results
are very similar to the first group. Although the transition is
first order we have not observed coexistence of metal and
insulator phases at any of the lattice configurations we have
studied.
Figure 2 plots the DFTþ DMFT energy of the correlated

bands (obtained as described in the Supplemental Material
[39] for interpolated and c-axis stretched structures) against
a linear combination of octahedral parameters [Eq. (3)].

Eeff ¼Ecorr−ϵaveNtot

¼E0−F 3ðδQ3−λ0δQ0−δQcÞΘðδQ3−λ0δQ0−δQcÞ:
ð4Þ

Here ϵave is the orbitally averaged on-site energy from
MLWF fits to the converged DFT band structures;Ntot ¼ 4,
and ϵaveNtot basically represents the insulating phase
electron energy up to a constant. The particular linear
combination with λ0 ¼ 0.45 is chosen so that the data from

the two different families of structures (which change the
bandwidth and octahedral distortion in different propor-
tions) collapses in both the insulating and metallic phases.
The dependence on δQ3 reflects the relation between the
octahedral shape and the orbital splitting. The dependence
on δQ0 reflects the change in bandwidth. We emphasize
that the insulating (metallic) state is only stable for

δQ3 − 0.45δQ0 < ð>ÞδQc ≈ −0.04 A
∘

(we expect δQc
depends on U,J). Apart from some rounding in the
immediate vicinity of the transition, the energy is a linear
function of the relevant combination of the structural
parameters, with a difference in slope between phases.
The curvatures ∂2Eeff=∂δQ2 in two phases are difficult to
determine accurately from these calculations but are small
enough compared with the K that any change in the K
across the phase boundary is negligible (details are in the
Supplemental Material [39]).
The choice of variables in Fig. 2 fixes the change in

force across the transition as F 3 ¼ F I
3 − FM

3 ¼ 2.8 and
F 0¼F I

0−FM
0 ¼−0.45ðF I

3−FM
3 Þ¼−1.3eV=Å. Within the

assumptions made here, the dependence of the insulating
phase energy on δQ⃗ is essentially independent of temper-
ature. However, as temperature is further lowered through
the paramagnetic insulating phase to the AFM phase
transition, an approximately linear evolution of the
Ru─O bonds lengths is observed [22,23], indicating an

FIG. 2. Electronic energy of correlated bands Eeff ¼
Ecorr − ϵaveNtot plotted against a linear combination of octahedral
parameters with λ0 ¼ 0.45 and calculated using DFTþ DMFT
for two series of structures: the linearly interpolated structures
between the experimentally observed metallic 400 K and insu-
lating 295 K structures (solid points, blue) and a series obtained
by starting from an relaxed insulating structure with a ¼ b ¼
5.44 Å and stretching the c axis (open symbols, red). The bold
dashed black line stands for the linear fit in Eq. (5) and the light
dashed line shows the phase boundary. The error bars are
statistical errors from the Monte Carlo solution of the DMFT
equations.
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approximately T-linear dependence of the insulating-state
force. Linearly extrapolating the Ru─O bond lengths
measured in experiments [22,23] at 180, 295, and 350 K
to 0 K yields results within 14% of our calculated values.
We therefore believe that the single-site DMFT theory used
here is a good representation of T → 0 K energetics and
that the temperature dependence is due to entropic terms
arising from a combination of intersite effects missing in
the single-site approximation used here, spin orbit effects
which change the on-site multiplet structure and lattice
contributions. We model these effect by a phenomenologi-
cal linear term in F⃗, so

F⃗ ¼
�
F 3

F 0

�
ð1 − 0.0017T½K�Þ: ð5Þ

The consistency of the model can be verified via a
computation of the pressure dependence of the transition.
This is obtained by adding to Eq. (1) a term þPdV ¼
P 1

4
ðabδc þ acδb þ bcδaÞ ¼ Pðβ3δQ3 þ β0δQ0Þ with

ðβ3; β0Þ ¼ ð−0.3281;−0.1861Þ eV=ðGPaÅ formula unitÞ,
so that applied pressure is in effect a linear term shifting the
position and value of the energy minimum. We find Pc ¼
3.6 − 0.011T ðGpaÞ which is comparable to Pexp

c ≈
2.3 − 0.006T ðGpaÞ fitted from published data [49].
More details are in the Supplemental Material [39].
In Fig. 3 we plot the free energy landscape at

different temperatures in the plane of Ru─O bond
length coordinates δx ¼ ð1= ffiffiffi

3
p ÞδQ0 − ð1= ffiffiffi

6
p ÞδQ3 and

δz ¼ ð1= ffiffiffi
3

p ÞδQ0 þ ð ffiffiffi
6

p
=3ÞδQ3, using force terms esti-

mated in Eq. (5). We chose the metallic state at T > TM−I
as the reference. At high temperature, there is no global
minimum in the insulating phase. For T ≤ TM−I, an
insulating energy minimum as in Eq. (2) appears and

becomes more stable. The stabilization energy defined in
Eq. (2) is ≈−0.048 eV=Ru at TM−I .
We now turn to epitaxially grown films. While epitaxial

films are strained with respect to bulk, strain is not the key
issue. Rather, the tight association of the in-plane lattice
parameter and the Ru─Oð1Þ bond length means that
epitaxy implies a constraint: instead of freely minimizing
Eq. (1) over the full space of structural variables, the system
can explore only a one-dimensional cut across the energy
landscape, corresponding to a fixed Ru─Oð1Þ bond length.
The solid and dashed lines in Fig. 3 show the one-
dimensional cuts which can be explored under different
epitaxy conditions. Because the curves typically do not
pass near the global minimum, the phase transition
becomes much more expensive and in most cases is
eliminated. Only in a small range of compressive strains
around −1.0% (relative to 295 K structure) can a metal-
insulator transition occur in a reasonable temperature range.
For a larger compressive strain the system is always a metal
while for a tensile or small compressive strain the material
is always an insulator. This is consistent with recent
experimental observations [50,51] that thin films of
Ca2RuO4 grown epitaxially on NdGaO3 (þ0.3% strain)
and NSAT (−0.48%) remain insulating up to 550 K while
films grown on NdAlO3 (−3.0%) remain metallic down to
lowest temperature. Only films grown on LaAlO3 (−1.6%)
exhibit a transition to a weakly insulating phase at
T ≈ 200 K.
In summary, we demonstrated the importance of lattice

energetics in the Mott metal-insulator transition, elucidat-
ing the crucial interplay between the local octahedral
distortions and long wavelength strains, and the previously
unappreciated role of epitaxial constraints. We focused on
Ca2RuO4, which has two simplifying features: the metal
and insulator have the same symmetry and octahedral
rotations are of minor importance, so the order parameter

FIG. 3. Free energy surfaces computed for unconstrained bulk Ca2RuO4 at temperatures 200 (a), 350 (b), and 550 K (c). along with
projection of the 350 K surface onto the x − z plane (d). The black dashed line in panels (c) and (d) show the metal-insulator phase
boundary. The solid and dashed lines show the structural trajectories which the system can explore for films grown under the epitaxial
strain conditions given in the legends. The blue and red regions of the lines indicate insulating and metallic regions, respectively.
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couples linearly to strains and the in-plane Ru─O bond
lengths determine the Ru─Ru spacing. Performing a
complete DFTþ DMFT structural relaxation study and
providing a less phenomenological treatment of the elec-
tronic and, especially, lattice entropies are also important
directions for future research. Most importantly, a gener-
alization of the theory to cases where octahedral rotation is
important (perovskite titanates and vanadates) or the
insulating phase breaks a translation symmetry (manganites
and nickelates) so that strain couples via nonlinear terms in
the elastic theory, is urgently needed.
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Bourée, F. Lichtenberg, A. Freimuth, R. Schmitz, E. Müller-
Hartmann, and M. Braden, Phys. Rev. B 68, 060401 (2003).

[3] E. Pavarini, S. Biermann, A. Poteryaev, A. I. Lichtenstein,
A. Georges, and O. K. Andersen, Phys. Rev. Lett. 92,
176403 (2004).

[4] A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev.
Lett. 74, 5144 (1995).

[5] A.-M. Haghiri-Gosnet and J. P. Renard, J. Phys. D 36, R127
(2003).

[6] Y. Tokura, Rep. Prog. Phys. 69, 797 (2006).
[7] J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and C.

Niedermayer, Phys. Rev. B 45, 8209 (1992).
[8] J. A. Alonso, J. L. García-Muñoz, M. T. Fernández-Díaz,

M. A. G. Aranda, M. J. Martínez-Lope, and M. T. Casais,
Phys. Rev. Lett. 82, 3871 (1999).

[9] M. T. Fernández-Díaz, J. A. Alonso, M. J. Martínez-Lope,
M. T. Casais, J. L. García-Muñoz, and M. A. G. Aranda,
Physica (Amsterdam) 276B–278B, 218 (2000).

[10] M. Medarde, C. Dallera, M. Grioni, B. Delley, F. Vernay, J.
Mesot, M. Sikora, J. A. Alonso, and M. J. Martínez-Lope,
Phys. Rev. B 80, 245105 (2009).

[11] F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).
[12] S. Nakatsuji, S. ichi Ikeda, and Y. Maeno, J. Phys. Soc. Jpn.

66, 1868 (1997).
[13] D. B. McWhan, T. M. Rice, and J. P. Remeika, Phys. Rev.

Lett. 23, 1384 (1969).
[14] T. Kikuzuki and M. Lippmaa, Appl. Phys. Lett. 96, 132107

(2010).
[15] M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka,

Y. Tokura, R. W Schoenlein, and A. Cavalleri, Nature
(London) 449, 72 (2007).

[16] H. Ehrke, R. I. Tobey, S. Wall, S. A. Cavill, M. Först,
V. Khanna, T. Garl, N. Stojanovic, D. Prabhakaran,
A. T. Boothroyd, M. Gensch, A. Mirone, P. Reutler, A.
Revcolevschi, S. S. Dhesi, and A. Cavalleri, Phys. Rev. Lett.
106, 217401 (2011).

[17] H. Ichikawa, S. Nozawa, T. Sato, A. Tomita, K. Ichiyanagi,
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