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Quantum spin ice materials, pyrochlore magnets with competing Ising and transverse exchange
interactions, have been widely discussed as candidates for a quantum spin-liquid ground state. Here,
motivated by quantum chemical calculations for Pr pyrochlores, we present the results of a study for
frustrated transverse exchange. Using a combination of variational calculations, exact diagonalization,
numerical linked-cluster and series expansions, we find that the previously studied Uð1Þ quantum spin
liquid, in its π-flux phase, transforms into a nematic quantum spin liquid at a high–symmetry, SUð2Þ point.
DOI: 10.1103/PhysRevLett.121.067201

Pyrochlore magnets have proved to be a rich source of
new phenomena [1,2], including the classical spin liquid
“spin ice” [3,4], celebrated for its magnetic monopoles [5].
Pyrochlores are also central to the search for quantum spin
liquids (QSL), massively entangled quantum phases of
matter, which provide accessible examples of exotic, topo-
logical (quasi)particles previously studied in high-energy
physics [6–9]. In particular, the quantum analogue of spin ice
is known to support a three-dimensional QSL with fractional
excitations, described by a Uð1Þ gauge theory [10–15], and
has been vigorously pursued in experiment [16–21].
Exciting as these theoretical developments are, the

range of experimental outcomes is far broader [1,2].
Encouragingly, studies of more general pyrochlore-lattice
models, in their classical limit, reveal several new ordered
and spin-liquid phases [18,22–25]. However, little is known
about the ground state of even the simplest model of a
quantum spin ice for frustrated transverse exchange, where
quantum Monte Carlo (QMC) simulation fails [26,27].
Since microscopic estimates for Pr-based pyrochlores have
predicted frustrated interactions [22], this is a question of
fundamental and experimental interest.
In this Letter, we address the fate of the QSL in a

quantum spin ice with frustrated transverse exchange. We
find that the Uð1Þ QSL, in its π-flux phase [26], gives way
to a new, nematic QSL, at an SUð2Þ-symmetry point in
parameter space. The nematic QSL phase combines the
symmetry fractionalization and emergent gauge degrees of
freedom of spin liquids [7], with broken spin rotation
symmetry, expressed through a bond-centered nematic
order parameter [28]. The existence of the nematic QSL
is supported by exact diagonalization (ED), cluster mean-
field theory (CMFT), cluster-variational calculations

(CVAR), and an exact, variational argument at the
SUð2Þ point. Evidence for the growth of nematic correla-
tions, and an unusual scaling of the heat capacity at high
temperature, is presented through numerical linked-cluster
expansion (NLCE) and high-temperature expansion (HTE)
calculations. These results provide an example of a nematic
QSL [29] in three dimensions, confirming that pyrochlore

FIG. 1. Phase diagram of the quantum spin ice model HXXZ
[Eqs. (1) and (2)]: (a) Quantum phase diagram found in cluster-
variational calculations for T ¼ 0. Quantum spin liquids
descended from spin ice, QSI0 and QSIπ , compete with easy-
plane antiferromagnetic order (AF⊥); all-in all-out order (AIAO);
and a nematic QSL (QSN⊥). QSIπ and QSN⊥ are connected
through an SUð2Þ-symmetric point. (b) Phase diagram found in
classical Monte Carlo simulations for T > 0 (cf. Ref. [25]). Three
spin liquids; spin ice (SI); the easy-plane spin liquid (SL⊥); and
a pseudo-Heisenberg antiferromagnet (PHAF), compete with a
nematic spin liquid (SN⊥), and AF⊥ and AIAO order. An
additional disordered regime (SL0) shares the correlations of
SL⊥ and AIAO. The white circles indicate the radial, logarithmic,
temperature scale. Simulation details are given in the Supple-
mental Materials [30].
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magnets can support a range of different QSL ground states
and are summarized in Fig. 1.
We consider the spin-1=2 XXZ Hamiltonian on the

pyrochlore lattice

HXXZ ¼
X
hiji

½JzzSz
iS

z
j − J�ðSþ

i S
−
j þ Sþ

j S
−
i Þ�; ð1Þ

where spin coordinates are defined locally such that the z
axis of spin space is aligned with a local C3 axis [16,24].
Equation (1) can be derived from atomic models of
pyrochlore oxides [22,37,38] and, for Jzz ≫ J� > 0, has
been studied as a minimal model of a quantum spin ice
[10–15,26,27,39–46]. We set

Jzz ¼ J cos θ; J� ¼ −
J
2
sin θ: ð2Þ

At θ ¼ π=4, and θ ¼ −3π=4, HXXZ is equivalent to a
Heisenberg model, with SUð2Þ symmetry.
For unfrustrated interactions, −π < θ < 0, HXXZ

[Eq. (1)] is accessible to QMC calculations. For θ ≲ 0,
the ground state is a Uð1Þ QSL (QSI0), giving way to
easy-plane antiferromagnetism (AF⊥) for θ < −0.033π
[11,12,14]. Perturbative arguments imply that the Uð1Þ
QSL survives for frustrated interactions, θ ≳ 0 [10]. In this
case, the Uð1Þ QSL enters a “π-flux phase” (QSIπ), with
fractionalized translational symmetry [26,27]. Classical
Monte Carlo simulations suggest that HXXZ remains in a
spin liquid state for 0 < θ < 0.602π, but that this spin
liquid changes character traversing the high-symmetry
point θ ¼ π=4 [25]—cf. Fig. 1(b). The fate of the quantum,
π-flux ground state, however, remains unknown.
Cluster mean-field theory.—To illuminate this question,

first, we explore the ground state of HXXZ [Eq. (1)] within
CMFT. CMFT consists in breaking the lattice up into finite
clusters, treating interactions within each cluster exactly,
and those between clusters at a mean-field level [47–51].
The geometry of the pyrochlore lattice permits degenerate
CMFT solutions, with translational symmetry restored, in
contrast to some previous approaches (see, e.g., [52]),
allowing treatment of spin liquids.
We start by dividing the pyrochlore lattice into two

sublattices of tetrahedra, “A” and “B”, and writing the wave
function as a product over A tetrahedra

jψCMFTðfhgÞi ¼ Πt∈AjϕtðfhgÞi; ð3Þ

where jϕtðfhgÞi is defined as the ground state of an
auxiliary Hamiltonian on tetrahedron t

H0ðtÞ ¼ HXXZðtÞ −
X
i∈t

hi · Si: ð4Þ

The fields fhg are variational parameters, chosen to
minimize

ECMFT ¼ hψCMFTðfhgÞjHXXZjψCMFTðfhgÞi: ð5Þ

The corner-sharing geometry of the lattice permits single
tetrahedron solutions to be connected in many different
ways (cf. “lego-brick rules” in [24]). For this reason, the
solutions for fhg, and the corresponding wave functions
jψCMFTðfhgÞi, encompass both disordered and ordered
states.
We find four kinds of optimal solutions for hi, each

corresponding to a different region of the phase diagram
Fig. 1(a). For 0.613π ≲ θ < 5π=4, the optimal solution has
hi ¼ hẑ everywhere, corresponding to all-in, all-out
(AIAO) order. For −ð3π=4Þ < θ ≲ −0.081π, fields hi are
ordered in the local xy plane, with (e.g.,) hi ¼ hx̂. This is
the easy-plane antiferromagnet, AF⊥.
For −0.081π ≲ θ < ðπ=4Þ, the solutions are spin-ice-

like. The fields hi have the form hi ¼ σihẑ, where
σi ¼ �1. The minimum value of ECMFT is attained by
any configuration of σi with two plus signs and two minus
signs on every tetrahedron. It is known that quantum
tunneling between spin-ice configurations results in two
distinct Uð1Þ QSLs, depending on the sign of J� [26,27].
These two phases, QSI0 and QSIπ , cannot be distinguished
within CMFT but are distinguishable using the variational
approach discussed below.
For ðπ=4Þ≲ θ < 0.613π, the solutions are similar to the

spin-ice case but now have the fields hi lying collinearly
in the xy plane, e.g., hi ¼ σihx̂. Once again, ECMFT is
minimized by any configuration of σi with two plus signs
and two minus signs on every tetrahedron. Since these σi
are disordered, the resulting state does not possess conven-
tional magnetic order. Nevertheless, the selection of a
global axis in the xy plane implies breaking of the Uð1Þ
spin-rotation symmetry of Eq. (1). This results in a finite
value of the spin-nematic order parameter

Q⊥ ¼
*

1

3N

X
hiji

 
Sx
iS

x
j − Sy

iS
y
j

Sx
iS

y
j þ Sy

iS
x
j

!+
; ð6Þ

defined on the bonds hiji of the lattice [25].
Cluster-variational calculations.—The CMFT wave

function, Eq. (3), is entangled at the level of a single
tetrahedron, and can describe disordered and ordered states.
But it cannot capture the long-range entanglement of a
QSL. Thus, distinguishing the quantum ground states of
Eq. (1) requires going beyond CMFT. For this, we
introduce the CVAR approach, based on a coherent super-
position of the degenerate wave functions found in CMFT.
We apply it to the case where CMFT predicts spin-nematic
order, finding that fluctuations beyond CMFT lead to a
nematic Uð1Þ QSL (see Supplemental Material [30]).
We begin with the CMFT result for a spin-nematic state

with collinearity axis hkx̂. We consider a superposition of
CMFT solutions
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jφi ¼
X
fσg

afσgjψCMFTðhσix̂Þi; ð7Þ

where the sum runs over all Ising configurations fσg with
two plus and two minus signs on every tetrahedron. The
coefficients afσg are variational parameters to optimize the
energy

ECVAR ¼ hφjHXXZjφi
hφjφi : ð8Þ

The wave functions jψCMFTðhσix̂Þi labeled by different
configurations fσg are not generally orthogonal. Their
overlap can be parametrized by the overlaps between
different CMFT wave functions jϕtðhÞi on a single
tetrahedron. The overlap between two optimized CMFT
wave functions scales as ∼on22 on44 where nm is the number
of A tetrahedra on which the arrangement of σi differs bym
sites, and omðθÞ is the corresponding overlap of wave
functions within a single tetrahedron. By expanding Eq. (8)
in powers of o2 and o4, we can derive an effective
Hamiltonian Heff acting amongst CMFT states. The lead-
ing term in Heff is a ring exchange term g6 ∼ o22, which
reverses the signs of σi around six-bond loops in
the lattice. Higher order corrections to Heff are also ring
exchanges with size decreasing exponentially with the
length of the ring. The next-to-leading terms involving
eight-bond ring exchange are substantially smaller than g6
throughout the region ðπ=4Þ < θ < 0.613π. The ratio of
eight-bond to six-bond ring exchanges is smallest (∼0.18)
bordering the AIAO phase.
The ground state favored by the six-bond ring exchange

has been studied using QMC calculations in [12], finding a
Uð1Þ QSL. Therefore, we expect that, near to the AIAO
phase, where g6 is more than 5 times larger than higher order
terms, the optimal superposition of CMFT states [Eq. (7)],
is also a Uð1Þ QSL. Since each CMFT state has the same
value of Q⊥ [Eq. (6)], this QSL retains spin-nematic order.
Following [29], we dub this phase a “nematic quantum spin
liquid,” denoting it QSN⊥ in Fig. 1(a). Below, we present
independent arguments which establish the relevance of
QSN⊥ near the Heisenberg point and provide further support
for nematicity bordering the AIAO phase.
While the breaking of Uð1Þ spin rotation symmetry in

the phase QSN⊥ is the most obvious difference between
QSN⊥ and QSIπ , the two phases can be distinguished in the
absence of this symmetry if certain other symmetries are
present. If Uð1Þ symmetry is broken down to C3 by
anisotropic exchange (as in Pr pyrochlores), then QSN⊥
still breaks the C3 symmetry, and is a distinct phase. If there
is only π rotation symmetry around the z axis of spin space,
then QSN⊥ loses its symmetry breaking character and
ceases to be a true nematic phase. However, it remains
distinguishable from QSIπ by the quantum numbers of its
photon excitations. In QSIπ the emergent electric field

associated with the photons is invariant under π rotations
around the z axis of spin space (E → E), whereas in QSN⊥,
it reverses its sign (E → −E). Therefore, in this case, QSN⊥
remains distinct from QSIπ , despite no longer breaking a
symmetry of the Hamiltonian.
Further support for nematic order.—Now, we provide

two further arguments supporting spin-nematic order.
The first argument is based on approaching the SUð2Þ

point θ ¼ ðπ=4Þ from the small θ side. For small θ > 0, the
ground state is the π-flux Uð1Þ QSL [10,26,27] [QSIπ in
Fig. 1(a)]. Gauge mean field theory predicts this state to be
stable up to θ ≈ 0.46π [26], well beyond the SUð2Þ point.
However, we show that, at the SUð2Þ point, it must become
unstable to nematicity.
To see this, observe that a wave function for the spin-

nematic phase can be generated by taking a ground state
wave function from within the QSIπ phase and acting on it
with global spin rotations

jnemðψÞi ¼ RzðψÞRy

�
π

2

�
jQSIπ; ð9Þ

where RαðϕÞ denotes a global rotation by an angle ϕ,
around the α axis of spin space. jnemðψÞi generically
supports a finite value of the nematic bond order parameter
Q⊥ [Eq. (6)], with all dipolar expectation values vanishing.
ψ parametrizes the direction of Q⊥ in the nematic state.
Global SUð2Þ rotations become symmetries of the model

at θ ¼ ðπ=4Þ. Thus, if QSIπ is stable up to the SUð2Þ point,
the energy gap to the nematic state must vanish, indicating
a nematic instability. It follows that the resulting spin-
nematic state inherits the gauge structure and symmetry
fractionalization of QSIπ.
The above argument cannot rule out some other ground

state taking over from QSIπ before θ ¼ ðπ=4Þ. Such
alternative states around θ ¼ ðπ=4Þ could include various
dimer-ordered [53–57] and spin-liquid [58–61] states,
although the mean field energy of a valence bond covering
of the lattice is higher than the mean field energy of QSN⊥
and QSIπ at θ ¼ ðπ=4Þ. It is useful, therefore, to have an
alternative way to establish nematic order. This is provided
by considering the excitations of the AIAO phase found for
Jzz < 0 [cf. Fig. 1(a)].
The AIAO state is the polarized state with maximum

total Sz. Since Sz is conserved, excitations can be labeled by
the number of spin flips, δSz relative to this state.
An instability to conventional XY ordering would be

indicated by the softening of a δSz ¼ 1 excitation (magnon).
An instability to nematic order, by contrast, is indicated by
the softening of a δSz ¼ 2 excitation: a two-magnon bound
state [28].
For sinðθÞ > 0, the lowest energy state with δSz ¼ 1 has

a gap ΔðδSz ¼ 1Þ ¼ J½−3 cosðθÞ − sinðθÞ�.
In Fig. 2, this is compared with the lowest energy state of

the δSz ¼ 2 sector, calculated using ED on a 128-site cubic
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cluster with periodic boundary conditions. Approaching the
boundary of the AIAO phase, the δSz ¼ 2 gap comes below
that for δSz ¼ 1, indicating formation of a two-magnon
bound state with lower energy than the lowest single-
magnon state. The two-magnon gap closes at θ ≈ 0.612π,
indicating an instability to nematic order, in good agree-
ment with θ ≈ 0.613π found using CVAR [Fig. 1(a)].
Finite temperature.—Thus far, we have presented evi-

dence for a nematic Uð1Þ QSL phase at T ¼ 0. In
simulations of the corresponding classical model, nematic
order arises at temperatures T ∼ 10−2J [Fig. 1(b)]. This is
similar to the energy scale of collinear ground state
selection in CMFT, suggesting a comparable transition
temperature in the quantum model. This raises the question
of what would be observed in a spin ice with frustrated
transverse exchange at intermediate temperatures T ∼ J.
To address this, we turn to series expansion methods.

Specifically, we use HTE [62–64] and NLCE [64–66] to
calculate the nematic susceptibility χnemðTÞ and heat
capacity CðTÞ (see Supplemental Material [30]). We focus
on parameters near the SUð2Þ point θ ¼ ðπ=4Þ, where our
theory predicts a zero-temperature phase transition between
QSIπ and QSN⊥. This point was recently studied using
diagrammatic Monte Carlo calculations [67], finding spin-
ice-like correlations down to T ¼ J=6, consistent with our
CVAR results.
HTE of the nematic susceptibility χnemðTÞ is plotted in

Fig. 3(a), for various exchange parameters. HTE converges
down to T ∼ J, which is not low enough to see any
definitive signature of nematic order. However, there is a
hint of a low-temperature transition at θ ¼ ðπ=4Þ in the

behavior of Padé approximants of χnemðTÞ. For θ ≲ ðπ=4Þ,
the Padé approximants indicate a suppression of the nematic
susceptibility below T∼J, whereas for θ> ðπ=4Þ, they show
an upturn at low temperatures. Future diagrammatic QMC
studies may be able to track the growth of the nematic
susceptibility down to lower temperatures than accessible in
our series expansion results.
A further hint of interesting physics at the SUð2Þ point

is revealed in NLCE calculations of the heat capacity
[Fig. 3(b)]. The calculations show a broad maximum at
temperatures TmðθÞ just above the temperature where
NLCE fails to converge. For a wide range of parameters
around the SUð2Þ point, the heat capacity curves for
different values of θ can be collapsed onto one another
by rescaling the temperature axis by TmðθÞ.
This suggests a region of parameter space where the

finite-temperature physics is controlled by a single point on
the zero-temperature phase diagram. This is reminiscent of
quantum criticality, consistent with the scenario of a zero-
temperature transition between nematic and QSIπ phases
at θ ¼ ðπ=4Þ.
Conclusions.—We have explored the properties of a

minimal model of a quantum spin ice, the spin-1=2 XXZ
model on the pyrochlore latticeHXXZ [Eq. (1)], focusing on
frustrated transverse exchange J� < 0. We have deter-
mined the ground states of this model within a variational
approach, CVAR, which builds upon the degenerate wave
functions found in cluster mean field theory [Fig. 1(a)]. We
find that a Uð1Þ QSL derived from spin ice, QSIπ, trans-
forms into another Uð1Þ QSL with easy-plane character
and spin-nematic order, QSN⊥, at the high-symmetry point,
J� ¼ −Jzz=2. Further evidence for this phase transition
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FIG. 2. Condensation of two-magnon bound states within the
AIAO phase, indicating the onset of spin-nematic order. Gaps to
the lowest one-magnon and two-magnon excitations of the AIAO
phase, ΔðδSz ¼ 1Þ and ΔðδSz ¼ 2Þ, are shown as a function of
the Hamiltonian parameter θ [Eq. (2)]. For δSz ¼ 1, the gap is
exact, while for δSz ¼ 2, it is estimated numerically for a 128 site
cluster. As θ decreases towards θ ¼ 0.612π the two-magnon state
comes below the one magnon state and then condenses. The
condensation of two-magnon bound states indicates incipient
nematicity [28]. The resultant phase boundary between QSN⊥
and AIAO, θ ≈ 0.612π, is close to that found in CVAR
θ ≈ 0.613π [cf. Fig. 1(a)], shown as a dashed line.
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FIG. 3. Finite-temperature properties of frustrated quantum
spin ice [Eq. (1)]. (a) Susceptibility χnemðTÞ associated with
spin-nematic order [Eq. (6)], from HTE. Temperature in (a) is
shown in units of the Ising exchange Jzz ¼ J cosðθÞ. Different
curves for a given value of θ correspond to different Padé
approximants. For θ > ðπ=4Þ, χnemðTÞ shows an upturn at low
temperatures, consistent with an approach to spin-nematic order.
(b) Heat capacity C, as a function of reduced temperature T=Tm,
calculated within NLCE. Here, Tm is the temperature of the heat
capacity maximum; different curves for the same θ represent
different orders of NLCE; agreement between these indicates
convergence. Plots of CðT=TmÞ collapse onto one another for
θ ≳ 0.17π, consistent with an extended regime where finite-
temperature properties are controlled by the zero-temperature
SUð2Þ point θ ¼ ðπ=4Þ, reminiscent of quantum criticality.
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comes from an exact, variational argument, analysis of the
two-magnon instability of the neighboring all-in, all-out
phase [Fig. 2], and finite temperature thermodynamics
[Fig. 3]. The variational approach introduced, CVAR, could
be applied to other frustrated quantummodels, where QMC
calculations are unfeasible.
The nematic QSL, QSN⊥, owns both the gauge degrees

of freedom and topological excitations of a Uð1Þ QSL
[10,13,15,26,43], and the Goldstone modes associated with
broken spin-rotation symmetry (cf. [25,68]). Exactly how
these excitations combine is a challenging open problem.
Our results offer new perspectives for experiment. Among

the most promising candidates for realizing a quantum spin
ice are Pr-based pyrochlores [17,19,21,69]. Our work is
particularly relevant to this case, based on microscopic
calculations of the sign of transverse exchange [22]. In light
of this, Pr pyrochlores may be proximate to a nematic QSL,
although the experimental situation is complicated by
structural disorder, which opens up new routes to both
QSL and non-QSL ground states [18,20,45,70–73].
We anticipate that QSN⊥ can be identified through its

gapped and gapless excitations, through the fractionaliza-
tion of translation symmetry [26,43], and through pinch
points in quasielastic neutron scattering [25], which would
“wash out” at low temperatures [13]. It could be distin-
guished from QSIπ by the presence of a Goldstone mode,
which would become gapped, but remain present in the
spectrum, in the presence of exchange anisotropy. The q
dependence of the intensity for photon excitations should
also differ between QSN⊥ and QSIπ because the emergent
electromagnetic fields are associated with different spin
components.
Given the developing experimental situation, with new

pyrochlores continuing to be synthesized [74,75], a reali-
zation of a nematic QSL may not be too distant.
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