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The phase diagram of isotropically expanded graphene cannot be correctly predicted by ignoring either
electron correlations, or mobile carbons, or the effect of applied stress, as was done so far. We calculate the
ground state enthalpy (not just energy) of strained graphene by an accurate off-lattice quantumMonte Carlo
correlated ansatz of great variational flexibility. Following undistorted semimetallic graphene at low strain,
multideterminant Heitler-London correlations stabilize between ≃8.5% and ≃15% strain an insulating
Kekulé-like dimerized (DIM) state. Closer to a crystallized resonating-valence bond than to a Peierls state,
the DIM state prevails over the competing antiferromagnetic insulating state favored by density-functional
calculations which we conduct in parallel. The DIM stressed graphene insulator, whose gap is predicted to
grow in excess of 1 eV before failure near 15% strain, is topological in nature, implying under certain
conditions 1D metallic interface states lying in the bulk energy gap.
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Ingraphene,which current technology strives to employ in
electronics, an insulating state does not naturally occur.
Strain engineering has long been considered as providing
mechanisms to pry open the symmetry-induced zero gap of
the original semimetallic graphene [SEM, see Fig. 1(a)]
honeycomb structure [1]. Among them, a nonisotropic three-
directional strain was suggested [2] and verified [1,3–6] to
introduce a gauge field and a gap.
An insulating state could alternatively be achieved

in graphene by simple isotropic expansive strain.
Experimentally, indentation experiments suggested that
graphene can be isotropically stressed until mechanical
failure near 22.5% strain, corresponding to a tensile stress
around 50 N=m [7]. No evidence of structural or electronic
transition occurring during expansion was provided.
Theoretically, idealized rigid-honeycomb Hubbard model,
quantum Monte Carlo (QMC) calculations had long sug-
gested [8–12] band narrowing and increased effective
electron-electron repulsion could push the correlated
π-electron system towards an undistorted honeycomb
antiferromagnetic insulator [AFI, see Fig. 1(b)]. Spin-
polarized density functional theory (DFT) calculations
[1,13] as well as rigid-lattice QMC simulations [14,15]
indeed suggest a SEM-AFI crossing of total energies with a
semimetal-insulator transition around (8–10)% strain.
Alternatively, isotropically stressed graphene could distort
to formPeierls or Kekulé-like dimerized [DIM, see Fig. 1(c)]

states, discussed by detailed DFT phonon calculations
[16,17] and by symmetry considerations [18], with a unit-
cell size increase from two to six carbons, and an electronic

(a) (b)

(c) (d)

FIG. 1. (a) SEM honeycomb, semimetallic; (b) AFI honeycomb
antiferromagnetic insulator; (c) DIM dimerized Kekulé-like
insulator; (d) HEX distorted hexagonal insulator. There are
two carbons per unit cell in (a) and (b), six in (c) and (d).
Following Ref. [18], tA, tB, and tC schematically denote hopping
integrals magnitudes.
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gap proportional to the dimerization magnitude. The DIM
distortion scenario is nevertheless denied by spin-polarized
DFT calculations where the AFI state has lower energy
than DIM.
All this work thus leaves the electronic and structural

phase diagram of isotropically strained graphene in a state
of uncertainty, on two separate accounts. First, the strong
band narrowing and increased role of strong electron
correlations, improperly treated by DFT, calls for a novel
QMC description capable of describing real strained and
deformable graphene, a goal never attained so far. Second,
the phase diagram under stress must be obtained by
comparing enthalpies, therefore including the stress-strain
term, rather than just total energies, as was universally done
so far. Because the stress-strain equation of state is different
for different phases, the correct phase diagram will not be
identical to that suggested by minimizing total energy
alone. Here, we implement accurate QMC enthalpy cal-
culations, reaching a highly instructive phase diagram for
isotropically strained graphene, that is found to differ from
that predicted by the best, spin-polarized, DFT.
Main QMC calculations were conducted based on a

variational wave function (JAGP), known to be accurate
and reliable in the description of strong electron correla-
tions from small molecules [19] to realistic crystalline
systems [20],

ΨJAGP ¼ J ðr1; r2;…; rNÞΨAGPðr1σ1; r2σ2;…; rNσNÞ;
ð1Þ

where ri and σi, for i ¼ 1;…; N, are the spatial and the spin
coordinates of the electrons. Here, J ¼ Q

i<j exp½uðri; rjÞ�
is the Jastrow factor, symmetric under all particle permu-
tations, while the determinantal part is the antisymmetrized
geminal power (AGP): ΨAGP ¼ Afðr1; r2Þχσ1;σ2 � � �
fðrN−1; rNÞχσN−1;σN , where A is the antisymmetrizer and
the product fðr; r0Þχðσ; σ0Þ describes a singlet valence-
bond electron pair with an orbital-symmetric function
fðr; r0Þ and a spin-antisymmetric one χσ;σ0 ¼ ð1= ffiffiffi

2
p Þ

ðδσ;↑δσ0;↓ − δσ;↓δσ0;↑Þ. ΨAGP reduces to a Slater determinant
with a particular choice of the pairing function [21],
implying therefore a description of the electron correlation
better than those based on any Jastrow-Slater ansatz [22].
The variational freedom contained in the ΨJAGP ground
state naturally permits a quantitative distinction between
the spin and charge correlations [23]. Parallel reference
DFT calculations were also performed with HSE6
exchange-correlation functional, projector augmented-
wave treatment of core levels [24] and a plane-wave basis
set [25] as implemented in the Vienna ab initio simulation
package (VASP) [25,26], with energy cutoff of 600 eV.
All calculations [27] were conducted with Natom ¼ 24

carbon atoms forming four six-atom unit cells of a planar
deformable honeycomb lattice whose average interatomic

spacing a was successively expanded relative to the zero-
stress value a0. A fully accurate k-point average is obtained
by boundary-condition twisting.
Figure 2(a) presents the total energy gain of all ordered

or distorted states relative to the undistorted, semimetallic,
nonmagnetic SEM state,E − ESEM, as a function of isotropic
strain ϵ ¼ ða − a0Þ=a0, from both diffusion Monte Carlo
(DMC) and DFT calculations. Figure 2(b) shows the DMC-
calculated tensile stress, yielding the 2D equations of state of
expanded graphene. In DFT, the AFI state [Fig. 1(b)] yields

(a)

(b)

(c)

FIG. 2. (a) Ground state energy E relative to the SEM phase
ESEM obtained as a function of strain ϵ by DMC in comparison
with DFT for the DIM, AFI, HEX phases. (b) Stress (σ)-strain (ϵ)
equation of state curve for strained graphene obtained by fitting
DMC energies. Dashed lines mark the transition stress values σl
and σu for SEM-DIM (continuous). (c) Enthalpy H of strained
graphene relative to that of the SEM phase HSEM for increasing
tensile stress σ. The blue-shaded region indicates the error bars on
the enthalpies for DIM and AFI phases by DMC. Upper bounds
of Eq. (2) for the DIM and AFI enthalpies also shown (DIM UB
and AFI UB) greatly reduce the error bars. The corresponding
strain ϵ at selected points and phases (indicated by arrows) are
also shown.
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the lowest energy above ϵ ≈ 7%, and represents the ground
state until ϵ ≈ 15%. Near 15%strain,DFTenergetics predicts
a Kekulé DIM state [Fig. 1(c)] to take over very briefly from
AFI, just before turning itself unstable and leading to
mechanical failure, in agreement with earlier DFT phonon
calculations [17].
The more accurate DMC result shows instead that, while

both DIM and AFI states appear around ϵ ≈ 10%, DIM has
the lowest energy for all increasing strains until failure.
Accurate DMC therefore suggests that the charge insta-
bility is dominant over the spin, which is just the opposite
of what the reference DFT calculation suggested. In line
with that, the prevalence of DIM over AFI is reduced in the
less accurate variational Monte Carlo calculations [27].
In addition, the lowest energy will not predict the

experimental phase diagram, where isotropic strain ϵ is
obtained by tensile stress σ. The equilibrium state under
stress, rather than energy, minimizes the enthalpy HðσÞ ¼
minS½EðSÞ − σS�, where σ ¼ ∂SEðSÞ with S the mean area.
The stress-area term makes in principle all negative-stress
states metastable, as an infinitely large enthalpy gain can
always be obtained by breaking the lattice apart. A
metastable stretched state of graphene is, nonetheless,
protected against failure by a large barrier, connected with
the positive slope of the area-stress curve—the bulk
modulus. A change of sign of that slope signals the
vanishing of the barrier, ushering in mechanical failure.
In Fig. 2(b) the maximum strain is ϵmax ∼ 15% for the

DIM phase, actually close to that obtained in Ref. [17] by
arbitrarily ignoring spin. Interestingly, this stability limit of
the DIM phase coincides [Fig. 2(a)] with the prevalence
within DFT of a HEX phase of Fig. 1(c), an artificial state
that foreshadows, as it were, the real mechanical failure in
a six-atom cell. The structurally undistorted AFI and SEM
phases have higher enthalpies and are ruled out at high
stress [Fig. 2(b)] despite their mechanical resilience,
until about 20% strain. The QMC-calculated enthalpy of
strained graphene, our main result, is shown as a function of
isotropic tensile stress in Fig. 2(c). Obtained by evaluating
the stress with polynomial interpolation, the result is
affected by a large statistical error (shaded region), mostly
due to the large uncertainty of the stress obtained by fitting
energy-area curves. With luck, however, we reduced this
error by means of a rigorous upper bound, which is obeyed
by the enthalpy difference of any given phase from the
symmetric phase

HðσÞ −HSEMðσÞ ≤ EðSÞ − ESEMðSÞ; ð2Þ

where S is the area corresponding to the stress σ in the
symmetric phase. The upper bound is practically coincident
with the mean value, totally eliminating the error. The
ground-state phase diagram predicted by minimum
enthalpy, Fig. 2(c), shows that the SEM state for σ < σl ¼
25.1 N=m (ϵl ¼ 8.5%) is followed by a DIM distorted state

for σl < σ < σu ¼ 30.4 N=m (ϵu ¼ 15%) where stability
of the DIM phase is lost, and mechanical failure ensues.
Even though metastable AFI and SEM phases still persist
up to 20% strain, their realization should imply an
unphysical enthalpy rise. One may therefore speculate that
the difference between our calculated mechanical failure
point, and that extracted from indentation (σ ¼ 40–50 N=m,
ϵ ¼ 22.5%) should be attributed to the absence of realistic
indentation details in our total uniform idealized description.
We can finally characterize and understand the DIM

state, between 8.5% and 15% strain. The dimerizing
distortion order parameter of Fig. 3(a), defined as the
difference between large and small bond lengths, has the
Peierls-Kekulé symmetry of Fig. 1(c) and appears to set in
continuously, reaching ∼0.17 Å near the DIM stability
limit ϵl ¼ 15%.
The above QMC results for ground state properties of

isotropically stressed graphene raise important physical
questions. First, how and why do correlations stabilize the
DIM phase instead of the AFI preferred by DFT between
∼10% and 15% strain? Second, what is the electronic gap

(a)

(b)

FIG. 3. (a) Graphene DIM (left axis) and AFI (right axis) order
parameters as a function of strain ϵ. The purple shaded area in the
vertical lines indicates a DIM-AFI coexistence region. The
Heisenberg model limit is ≃0.54 μBohr [41]. (b) Correlation
energy gain, measured by the energy per atom difference between
the single determinant ansatz (Jastrow-Slater determinant wave
function) and the corresponding multideterminant JAGP wave
function. The largest energy gain occurs in the DIM state,
underlining its resonating valence-bond nature, actually increas-
ing for large strain ϵ. Small negative values at small strain are
finite-size effects. Inset: finite-size scaling of this correlation
energy gain in the DIM state at ϵ ¼ 15%.
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of the insulating DIM phase of the strained graphene?
Third, is the DIM insulator topologically trivial or non-
trivial and what consequences does the answer entrain?
To the first point, the multideterminantal character of our

variational ansatz of Eq. (1), originally a paradigm for the
resonating valence bond (RVB) state [42,43], is crucial for
the enhanced stability of the correlated DIM state. The
Jastrow factor J partly projects out from the determinantal
part ΨAGP the single C–C molecular orbital (Mulliken)
electron pair term, which is largest in unstressed graphene
but energetically penalized by electron-electron repulsion
under stress. That favors the two-determinant C–C valence
bond (Heitler-London) term. All goes qualitatively as in the
textbook two-electron problem of strained H2 molecule.
A black bond in Fig. 1(c), with obvious notations, is the
entangled combination of the two Slater determinants
c†A↑c

†
B↓j0i and c†A↓c

†
B↑j0i between A and B, with zero

double occupancies. By contrast, the uncorrelated Peierls
molecular orbital wave function ðc†A↑þc†B↑Þðc†A↓þc†B↓Þj0i
involves a larger double occupancy for both sites, and a bad
electron-electron repulsion. This many-electron entangled
wave function of the correlated DIM phase contains a
Jastrow factor, acting on an exponentially large number of
Slater determinants 2Ns=2, that appropriately penalizes the
atomic configurations, where Ns is the total number of
singlet bonds.
To gauge the correlation energy gain permitted by our

ansatz, we show in Fig. 3(b) the correlation energy obtained
by the multideterminant ΨAGP over a single determinant,
still with the Jastrow factor. This difference is obtained by
projecting the pairing function f, for each twist used, to the
optimal fP obtained by restricting to the best single
determinant, calculated from the orthogonal eigenfunctions
[44] ϕi associated to the original pairing function f
[i.e.,

R
dr03fðr; r0Þϕiðr0Þ ¼ λiϕiðrÞ, where λi are the cor-

responding eigenvalues] as fPðr; r0Þ ¼
PN=2

i¼1 λiϕiðrÞϕiðr0Þ
with the largest jλij [45]. Since N electrons exhaust the
occupation of the N=2 one particle orbitals ϕi, fP describes
the corresponding Slater determinant possessing maximum
weight

Q
ijλij in the multideterminant expansion of the

AGP, as described in Ref. [45]. The small energy excess of
this simpler wave function and the full JAGP, computed
by correlated sampling, measures the multideterminant
“RVB” correlation energy gain. As shown in Fig. 3(b),
this correlation energy gain is negligible in both perfect
honeycomb structures, i.e., the poorly strained SEM and
the largely strained AFI phases. Conversely, it becomes
extensive (see inset) and growing with order parameter in
the DIM phase, which therefore becomes stabilized, rather
than the loser as in DFT. Stabilization of the DIM phase can
be attributed to superexchange energy that is poorly treated
within DFT.
To the second point, the electronic gap and the difference

between charge and spin gaps is not directly obtainable by a

QMC ground state calculation, but we get an order of
magnitude from DFT, where the DIM electronic Kohn-
Sham gap grows from zero at 8.5% strain to about 1.1 eVat
15% [27].
To the third point, we note that adiabatic continuity

between the strongly correlated DIM state and the uncorre-
lated Kekulé state discussed in literature [18,46,47] implies
the DIM insulating state of strained graphene is topologi-
cally nontrivial, unlike the AFI or HEX states. With
reference to Fig. 1 (one-electron tight-binding is sufficient
for this purpose), the bond dimerization of the DIM phase
corresponds to jtCj > jtAj ¼ jtBj, while the HEX phase to
jtCj < jtAj ¼ jtBj. The nontrivial nature of the DIM phase is
protected by the sublattice (chiral) symmetry and the mirror
symmetry along a bond [46]. While this fact has no special
consequences in infinite perfect 2D graphene strained into
the DIM phase, it will, as in other topological insulators
[48], show up at interfaces and defects, which can support a
topological state energetically placed inside the dimerization
gap. As a demonstration of that, we present a model tight-
binding DIM-HEX two-phase coexistence with the zigzag
interface under periodic-boundary conditions [Fig. 4(c)].
Its electronic structure in Fig. 4(a) shows topological states,
with their characteristic gapless modes crossing the Fermi
level, localized at the two DIM-HEX interfaces. This is in
contrast to a model DIM-AFI interface [Fig. 4(d)] where no

(a) (b) (c)

(d)

FIG. 4. Tight-binding band structures of systems with zigzag
interfaces between (a) DIM and HEX phases and (b) DIM and
AFI phases. The vertical axis is the single-particle excitation
energy relative to the Fermi level and the horizontal axis the
momentum parallel to the interface. The parameters ðtA; tB; tCÞ
are assumed to be ð0.95t; 0.95t; 1.05tÞ for DIM, ð1.05t; 1.05t;
0.95tÞ for HEX, and ðt; t; tÞ for AFI. The hopping integrals
connecting the two phases are set equal to t. The magnitude of the
gap in the AFI phase is set equal to that of the DIM phase, as
indicated by the shaded area in (a) and (b). The intragap interface
modes are highlighted with thick magenta lines in (a). Schematic
figures of the calculated interface between (c) the DIM and HEX
phases and (d) the DIM and AFI phases. The dotted-vertical line
in (c) and (d) indicates the zigzag interface, and the shaded area
the unit cell. The size of the unit cell is determined by the widths
W1 andW2 of the two phases, indicated in the bottom of (d), and
the vertical length d. The calculations in (a) and (b) are for
W1 ¼ W2 ¼ 50. The system as a whole lies on a torus.
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gapless interface states appear [Fig. 4(b)]. This difference is
simply understood because the DIM-HEX system preserves
the two symmetries described above but the DIM-AFI
system does not. Although the bulk single-particle gap
increases with the electron correlations, these topological
features remain qualitatively the same because of adiabatic
continuity.
The impact of increasing electron correlations in

isotropically and uniformly strained graphene, calculated
by QMC simulations with an accurate variational wave
function, is in summary predicted to be nontrivial. The
phase diagram dictated by minimizing enthalpy under
increasing stress predicts the sequence: SEM-DIM-
failure, different from the best spin-polarized density-
functional predictions. Large electron correlations
stabilize the DIM phase, schematized in Fig. 1(c), in the
(8.5–15)% tensile strain range corresponding to the
ð25–31Þ N=m stress range. Roughly speaking, dimeriza-
tion freezes Pauling’s resonating valence bond, a state
which fluctuates in the honeycomb spin-liquid state as
described, e.g., by Ref. [9], into a valence-bond solid,
realized by a Kekulé-like phase that breaks translation
invariance. Remarkably this effect was very recently
observed in a lattice model of bilayer graphene [49].
The DIM phase possesses a stress-dependent order
parameter and a correspondingly increasing electronic
gap. In correspondence with the predicted continuous
SEM-DIM transition the mechanical impedance of
graphene should exhibit a dissipation singularity.
Electronically, the graphene DIM insulator is topological,
implying protected intragap states localized around
defects with peculiar symmetry properties, including
topological 1D Dirac states at grain boundaries and
dislocations. Our predicted 15% failure strain is some-
what smaller than the 22.5% reported by experimental
indentation studies, possibly due to the role of nonun-
iformities in indentation mechanics, absent in our so
far totally uniform calculations. The onset of the DIM
structural deformation and of an electronic gap which
DFT estimates in the order of about one eV at failure,
as well as of topologically related defect states in this
gap could be used in the future to detect spectroscopically
this novel state of strained graphene.
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