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The radiation pressure force on a nearly single-order diffraction grating was measured for a transmission
grating near the Littrow angles at wavelengths of 808 and 447 nm. The component of force parallel to the
grating agreed well with our prediction, being proportional to the product of the grating order and the ratio
of the wavelength and grating period. The normal component of force varied with the incident angle,
vanishing near the Littrow angle as expected. The measurements verify a correspondence between the
Fourier grating momentum and the mechanical momentum. This Letter provides opportunities for in-space
fly-by-light sailcraft as well as terrestrial applications.
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Since Maxwell’s first prediction in 1873 [1], radiation
pressure has helped to describe phenomena ranging from
the astronomical to the quantum realm. For example, the
gravitational collapse of stars and accretion dynamics are
governed by radiation pressure [2,3]. Experimental evi-
dence of Kepler’s 1619 explanation of comet tails [4,5] was
later extended to the general distribution of interplanetary
dust [6,7]. Terrestial applications have found uses in
biology as optical tweezers [8], laser cooling of atoms
[9,10], and macroscopic objects [11,12]. The detection of
gravitational waves by means of laser interferometers
requires an accounting of radiation pressure [13].
Microstructures such as optical wings [14] and slot wave-
guides have promising photonic applications [15,16]. Thin
microfabricated sheets such as diffraction gratings and
diffractive metamaterials [17–23] provide opportunities
to marry recent developments in materials research with
grand ambitions for in-space propulsion and navigation.
For example, radiation pressure is one of the few methods
of reaching distant stars with free sunlight [24,25] or
extraordinarily powerful laser systems [26,27].
While plans for those sailcraft considered elementary

attitude-controlled reflective sails, optical scientists have
recently proposed passive or active diffractive sails that
may provide superior control authority for near-Earth
missions and beyond [28–30]. Unlike a reflective sail,
which has only a normal component of force relative to the
surface, a diffractive sail has both tangential and normal
components of force. The latter is notable for changing
sign, continuously passing through the zero-value point as
the angle of incidence is varied. Moreover, the large
tangential component of force of a diffractive sail may
be particularly advantageous for raising or lowering the
orbit of a sailcraft [28,30].
Although the magnitude of radiation pressure may seem

relatively weak owing to its inverse relation to the speed of

light, the force may be comparable to the gravitational force
in outer space or in a quasineutrally buoyant liquid. The
exertion of radiation pressure on a grating provides both
astronautical opportunities to propel low-areal-density sail-
craft through space and a new laboratory technique to assert
noncontact forces in a liquid. Light-driven sails being
developed for future space travel afford low-cost and
inexhaustible energy for a myriad of missions [31–34].
Similar to the development of air flight in the early 1900s,
sailcraft technology is likely to rapidly advance after in-
space demonstrations reveal the extent of fly-by-light
challenges. New materials and sailcraft architectures will
be perfected to optimize particular mission objectives. For
example, one may question whether a reflective film such
as metal-coated polyester is the optimal means of trans-
ferring radiation pressure into a mechanical force or torque.
As an alternative, a transmissive or reflective dielectric
diffractive film may provide advantages related to effi-
ciency, mass, heating, and attitude control. Electro-optics
beam steering of a diffractive film [34] may be preferable to
mechanical systems, especially if the sail area extends over
hundreds of square meters.
In this Letter we examine the radiation pressure force on

a fused silica transmission grating that has been optimized
to diffract light mostly into one dominant order at the
Littrow angle. To satisfy the law of conservation of
momentum, the grating may be expected to react and
move, owing to the redirected beam momentum. However,
this prediction cannot be made with certainty for two
reasons: First, radiation pressure on a diffraction grating
has apparently never been measured. Second, light scatter-
ing from a structured surface may be complicated by
multiple transmitted and reflected diffraction orders, as
well as surface or guided waves that may randomly scatter
from surface roughness, leak, or Bragg-scatter from the
periodic structure [35–40]. Experimentation is therefore
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needed to determine the magnitude of the force and to
verify any theoretical model of the system.
The radiation pressure force on a nonabsorbing grating

may be expressed as the mechanical reaction to optical
diffraction (see S1 in the Supplemental Material [41]):

F⃗ ¼ ðPi=ckÞ
�
k⃗i −

X
m

ηmk⃗m

�
; ð1Þ

where ηm ¼ Pm=Pi is the efficiency of the mth diffracted
beam; Pi (Pm) is the incident (diffracted) beam power;
energy conservation requires

P
mηm ¼ 1; c is the speed of

light; k⃗i (k⃗m) is the incident (diffracted) wave vector, with
k ¼ jk⃗ij ¼ jk⃗mj ¼ 2π=λ; and λ is the wavelength of the
beam of light. Absorptive heating of less than 0.02 (K) is
expected for our fused silica grating [42] (see S2 in the
Supplemental Material [41]), allowing us to ignore pressure
from reradiation, convection, and outgassing. Given spe-
cific design and optical properties of the grating, the values
of efficiency may be determined by numerical methods
[23,35–39]. Alternatively, they may be experimentally
determined as described below by measuring the power
of the diffracted beams.
A simplified depiction of incident and diffracted beams

for a single-diffraction-order grating, with corresponding
angles θi, θt, and θr, is shown in Fig. 1. Phase-matching of
the electromagnetic fields at the grating boundary provides
a relation between the components of the wave vectors that
are parallel to the surface:

ðk⃗i þmK⃗Þ · p̂ ¼ k⃗m · p̂; ð2Þ

where k⃗m is the mth diffraction order (for either the
reflected or transmitted beam), p̂ (n̂) is the unit vector

parallel (normal) to the grating surface, and K⃗ ¼ ð2π=ΛÞp̂
is the fundamental wave vector associated with the grating
periodΛ; it is often called the grating momentum in Fourier
optics (the scaling factor ℏ is typically ignored). The well-
known grating equation is a restatement of Eq. (2):
sin θm ¼ − sin θi þmλ=Λ. There is no transmitted dif-
fracted beam when θm ¼ �90°, which corresponds to
a cut-off incidence angle θi;c ¼ sin−1ðmλ=Λ ∓ 1Þ. For
example, the incident angle must exceed θi;c ¼ 30° if
m ¼ 1, λ ¼ 808 nm, and Λ ¼ 540 nm.
For discussion purposes, let us first consider an ideal

grating having unity transfer efficiency into a single
diffraction order, allowing only an incident wave and either
a transmitted or reflected wave. The parallel and normal
force components of radiation pressure force may be
expressed by the use of Eqs. (1) and (2), respectively:

Fp ¼ −ðPi=cÞðmλ=ΛÞ; ð3aÞ
Fn ¼ ðPi=cÞðcos θi � ½1 − fmλ=Λ − sin θig2�1=2Þ; ð3bÞ

where the minus (plus) sign is for a transmissive (reflective)
diffraction order, and λ=Λ ¼ K=ki is the ratio of the grating
momentum and photon momentum. The parallel force F⃗p

and mK⃗ are antiparallel as expected from conservation of
momentum (e.g., see Fig. 1). That is, the value of F⃗p is

directly related to the grating momentum K⃗. What is more,
Fp is independent of the incident angle θi (assuming, of
course, that the diffraction condition jθij > jθi;cj is satis-
fied). The normal component of force is positive below
the Littrow diffraction angle, defined by the relation
2 sin θi;L ¼ mλ=Λ. For jθij > jθi;Lj, the normal component
of force is negative, and the light source acts as a partial
“tractor beam" [43–46]. At the Littrow angle, Fn vanishes.
In practice, a grating may diffract multiple orders, and

the diffraction efficiency of each may vary with the incident
angle and wavelength. In such cases, the expression of
force must account for the momentum imparted by each
grating order, which may be reflective or transmissive in
nature (as indicated by the r and t subscripts below). If
there is a dominant diffracted order, one may expect the
force on the grating to be similar to the predictions
described above. In general, the force components for a
nonabsorbing grating may be expressed as

Fp ¼ −
Pi

c

X
m

½ðηm;r þ ηm;tÞðmλ=ΛÞ�; ð4aÞ

Fn ¼
Pi

c

X
m

½ηm;rðcos θi þ ½1 − fmλ=Λ − sin θig2�1=2Þ

þηm;tðcos θi − ½1 − fmλ=Λ − sin θig2�1=2Þ�; ð4bÞ

where ηm;r ¼ Pm;r=Pi and ηm;t ¼ Pm;t=Pi are the efficien-
cies of the mth-order diffracted beams at the wavelength λ,

FIG. 1. Plane of incidence for a diffraction grating of period Λ,
with respective incident, reflected, and transmitted angles θi, θr,
and θt; wave vectors k⃗i, k⃗r, and k⃗t; and grating momentum
K⃗ ¼ ð2π=ΛÞp̂. For a single diffraction order, the force compo-
nent parallel to the grating Fp is constant, whereas the normal
component Fn may be positive, negative, or zero.
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and
P

mðηm;r þ ηm;tÞ ¼ 1 owing to the conservation of
energy. The values of efficiency are expected to change
with incidence angle, and thus both components of force
will vary with angle. A special case exists when the incident
power is arbitrarily split between a transmitted and
reflected beam, both of the same order, in which case
Eqs. (3a) and (4a) agree, providing an angle-independent
tangential force. We also note that like Eq. (3b), Eq. (4b)
may in some cases allow a zero-valued normal force
component at a particular incident angle, resulting in a
purely tangential force.
Given the weak magnitude of the expected force

F ∼ Pi=c < 5 nN, we chose to measure the components
of force within an evacuated bell jar by use of a custom-
built torsion oscillator [47] as depicted in Fig. 2 (see S3 in
the Supplemental Material [41]). We selected a commer-
cially available single-order fused silica transmission gra-
ting having a period of Λ ¼ 540 nm. The grating was
attached to the torsion arm in one of two configurations:
(A) with its surface normal parallel to the copper wire, or
(B) with its surface normal perpendicular to the copper wire
(see insets of Fig. 2). Separate experiments were performed
with different lasers. The first laser (λ ¼ 808 nm,
P0 ¼ 345 mW) provided an efficient first-order diffraction
at the Littrow angle. The second laser (λ ¼ 447 nm,
P0 ¼ 1.5 W) allowed both a first-order and a second-order
Littrow angle. Weaker diffraction orders were also detected
in both cases. The measured period of free oscillation of the
torsion oscillator was T0 ¼ 100.6 s, and the characteristic
decay time (1=α) was roughly 80T0. Although the output
power of the laser was constant, the power on the grating
varied with incident angle owing to varied Fresnel trans-
mission at the borosilicate bell jar surfaces. To account for
this variability, we calculated the transmission through the
bell jar, TAðθiÞ and TBðθiÞ, for both configurations (see
Table I) and determined the expected power at the grating,
e.g., PiðθiÞ ¼ TðθiÞP0.

The diffraction grating was first mounted with its surface
normal oriented parallel to the torsion arm, as depicted in
Fig. 2, configuration A. The grating lines were transverse to
the plane of incidence. With the bell jar removed, the
oscillator was immobilized to allow measurements of the
transmitted, diffracted, and reflected beams with the forcing
laser (λ ¼ 808 nm, and linear polarization transverse to the
plane of incidence). The measured diffraction efficiencies
and angles are depicted in Fig. 3(a) for four different angles
of incidence between 30° and 60° (the incident wave
vectors are shown without arrows). For this range,
θi > θi;c, and the incident beam underfills the grating
surface. The corresponding force components (described
below) are shown in Fig. 3(b) as round black data points.
The transmitted first-order diffraction efficiency was
expected to be optimal near the Littrow angle θi ¼ 48°.
In fact, both the 40° and 50° incident angles provided
measured peak diffraction efficiencies of roughly 60%. The
total measured diffracted power amounted to ∼82% of the
input beam power, suggesting that ∼18% of the beam
power was diffusely scattered (listed as ηs ¼ Ps=P0 in
Table I). The scattering is attributed to power that does not
diffract into allowed orders, but rather directly scatters
or couples into guided waves and subsequently scatters
[35–37,39,40].

TABLE I. Calculated Fresnel transmission coefficients TðθiÞ
for a borosilicate bell jar with deduced grating scattering fraction
ηs ¼ Ps=P0.

λ ¼ 808 nm, n ¼ 1.51 θi 30° 40° 50° 60°

Configuration A TA 0.89 0.87 0.83 0.78
Configuration B TB 0.78 0.83 0.87 0.89
Scatter ηs 0.17 0.19 0.13 0.23

λ ¼ 447 nm, n ¼ 1.53 θi 15° 25° 35° 45° 55° 65°

Configuration A TA 0.9 0.9 0.88 0.85 0.8 0.74
Scatter ηs 0.21 0.33 0.36 0.23 0.29 0.27

FIG. 2. Top view schematic. Torsion oscillator with moment
arm of length R, angular displacement δ, forcing laser, tracking
laser, camera, screen, and diffraction grating in configurations A
and B.

FIG. 3. Measured (a) diffraction efficiencies and angles, and
(b) force components Fp and Fn, for λ ¼ 808 nm, P0 ¼
345 mW, and four angles of incidence. (a) The grating surface
(not shown) is aligned along the 90°–270° line. (b) Torsion
oscillator measurements (dark). Predicted values are based on
efficiency measurements (white).
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Next, we enclosed the oscillator within the bell jar,
evacuated the chamber, and brought the free oscillator to a
near standstill. The forcing laser power was set to
P0 ¼ 345 mW, and a mechanical shutter was opened at
time t0 to provide a step-function force on the grating,
resulting in an angular displacement such as that depicted
in Fig. 4. This procedure was repeated three times for each
of the four incidence angles described above. The time-
varying angular displacement of the tracking laser upon the
screen was extracted and fitted to the well-known equation
for a weakly damped harmonic oscillator (see S4 in the
Supplemental Material [41]), from which we derived force
values for Fp. The excellent agreement between the
experimental data and the oscillator model in Fig. 4 (typical
RMS angular displacement error ∼0.08%) confirms both
the veracity of the harmonic oscillator model and the high
degree of mechanical stability and repeatability of our
apparatus. The determined values of the tangential force Fp

are plotted in Fig. 3(b), showing good agreement between
the values of force that were measured with the torsion
oscillator (dark circles with error bars) and the values
predicted from the measured diffraction efficiencies using
Eq. (4a) (white circles).
To obtain values of the normal component of force, we

changed the orientation of the diffraction grating to
configuration B (see Fig. 2) and recorded the laser-driven
angular displacement of the torsion pendulum. The pro-
cedure described above was used to extract values of Fn,
shown in Fig. 3(b) as dark squares with error bars. Again,
we find relatively good agreement with the values predicted
from Eq. (4b), shown as white squares in Fig. 3(b). As
suggested above, the normal component of force is found to
vanish, but unlike the case of a single-order grating where it
vanishes at the Littrow angle, here we find Fn ¼ 0 at
θi ∼ 60°. Discrepancies between the measured values of
force and the values predicted from efficiency measure-
ments may be attributed to nonuniform scattering of the
guided waves, which also assert radiation pressure.
To assess the radiation pressure at a wavelength that

supports two Littrow angles, one at θi ¼ 24° form ¼ 1 and

another at 56° for m ¼ 2, we substituted a laser having a
wavelength λ ¼ 447 nm and power P0 ¼ 1.5 W. If a single
dominant diffraction order is produced at a given angle of
incidence, we expect the value of Fp to scale with the value
of m according to Eq. (3a). To verify this prediction, we
mounted the grating in configuration A (see Fig. 2). The
measured diffraction efficiencies of the transmitted and
reflected beams are depicted in Fig. 5(a) for angles where
there is a dominant first-order beam, and in Fig. 5(b) for
angles where there is a dominant second-order beam (the
incident wave vectors are shown without arrows). Values of
force based on these efficiency values and Eq. (4a) are
depicted as white circles in Fig. 5(c), whereas those
obtained from the torsion oscillator are shown as black
circles. Accounting for the angle-dependent transmission
through the bell jar for the torsion oscillator experiments
(see Table I), the average force efficiency, hFpc=TP0i, was
0.99 for the m ¼ 2 set, and 0.46 for the m ¼ 1 set,
providing a ratio (2.15) that was 8% higher than the value
(2.00) that would have been expected for a grating
producing a single diffraction order (one near θi ¼ 24°,
and the other near 56°). This agreement with the single-
order approximation is remarkably good, supporting the
direct relationship between the grating order m and Fp.
Discrepancies were found between the measured forces and
those predicted from the multiorder model [black and white
circles in Fig. 5(c), respectively]. The differences, which
are more pronounced than the 808 nm data, may be
attributed to the wavelength-dependent scattering and wave

FIG. 4. Example of measured and modeled angular beam
displacement: λ ¼ 808 nm, P0 ¼ 345 mW, θi ¼ 40°. Fitted
parameters: Shutter release time t0 ¼ 420 s, parallel force com-
ponent magnitude jFpj ¼ 1.14 nN.

FIG. 5. Diffraction efficiencies and angles, and radiation
pressure at λ ¼ 447 nm, P0 ¼ 1.5 W. (a) m ¼ 1 set: Measured
efficiencies at incident angles θi near the first-order Littrow angle
24°. (b)m ¼ 2 set: Same as (a), but near the second-order Littrow
angle 56°. (c) Measured (black circles) and predicted (white
circles) values of Fp.
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guiding. Scattering generally increases as the wavelength
decreases. In fact, the scattered powers listed in Table I are
greater at λ ¼ 447 nm than at 808 nm.
In summary, we have used a vacuum torsion oscillator in

two configurations at λ ¼ 808 nm to measure the radiation
pressure force both normal and parallel to a diffraction
grating of period Λ ¼ 540 nm. The grating produced a
dominant transmitted diffraction order and a weaker trans-
mitted and reflected order. The measured forces were
qualitatively similar to those predicted for a grating
producing a single diffractive order, and quantitatively in
agreement with a multiorder model. The parallel compo-
nent of force was relatively constant as the angle of
incidence varied, whereas the normal component varied
with angle, vanishing near the Littrow angle. An additional
experiment at a shorter wavelength (λ ¼ 447 nm) verified
that the parallel component of radiation pressure force
scales with the diffraction order, as expected when a single
dominant order is diffracted. Experiments at both wave-
lengths confirmed that when there is a dominant diffraction
order, the parallel component of force scales as the ratio of
the optical wavelength and the grating period, λ=Λ—or
equivalently, with the ratio of the grating momentum and
wave momentum, K=ki. That is, the so-called grating
momentum, which is a construct from Fourier optics,
has been verified to impart an equal and opposite mechani-
cal momentum. Unlike a reflective surface that has only a
normal component of radiation pressure force, a grating has
been experimentally demonstrated to provide both normal
and tangential components, thereby affording new opto-
mechanical applications of diffractive films.
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