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We confront observational data from gravitational wave event GW170817 with microscopic modeling of
the cold neutron star equation of state. We develop and employ a Bayesian statistical framework that
enables us to implement constraints on the equation of state from laboratory measurements of nuclei and
state-of-the-art chiral effective field theory methods. The energy density functionals constructed from the
posterior probability distributions are then used to compute consistently the neutron star equation of state
from the outer crust to the inner core, assuming a composition consisting of protons, neutrons, electrons,
and muons. In contrast to previous studies, we find that the 95% credibility range of predicted neutron star
tidal deformabilities (136 < Λ < 519) for a 1.4 solar-mass neutron star is already consistent with the upper
bound deduced from observations of the GW170817 event. However, we find that lower bounds on the
neutron star tidal deformability will very strongly constrain microscopic models of the dense matter
equation of state. We also demonstrate a strong correlation between the neutron star tidal deformability and
the pressure of beta-equilibrated matter at twice saturation density.
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Gravitational wave and electromagnetic signals from
binary neutron star mergers offer a unique probe for studying
the properties of ultradensematter. The recent observation of
gravitational wave event GW170817 [1] and the associated
electromagnetic counterpart [2] suggest the source to be a
merger of two neutron stars with combined mass Mtotal ¼
2.74þ0.04

−0.01 M⊙ that left behind a relatively long-lived hyper-
massive neutron star remnant. Measurements of the late
inspiral gravitational waveform from GW170817 were
sufficient to place an upper limit of Λ < 800 on the tidal
deformability [3,4] of a 1.4 M⊙ neutron star, competitive
with bounds [5] deduced from current neutron star mass
and radius measurements. Subsequent works [6–12] have
inferred constraints on a broader set of bulk neutron star
properties such as the maximum mass [6–8,10,11], radii
[6,7,12], and tidal deformabilities [9,12] from a combination
of observational data and numerical relativity simulations.
Ultimately, it will be equally important to infer complemen-
tary constraints on specific properties of the dense matter
equation of state itself [13], such as the symmetry energy and
its density dependence.
In the past, awide range ofmodels for the nuclear equation

of state [14–19] have been used to investigate the neutron star
tidal deformability. In the presentLetter, our aim is to develop
a framework that will enable statistical inferences of neutron
star properties through the combination of laboratory mea-
surements of nuclei and advances in microscopic modeling
of the low- to moderate-density equation of state from chiral
effective field theory (EFT) [20–22]. For this purpose,
we construct parametric equations of state for symmetric
nuclear matter and pure neutron matter, whose parameters

are sampled from a posterior Bayesian distribution function.
The prior distribution functions are obtained from chiral
effective field theory predictions for the nuclear equation of
state up to twice nuclear saturation density, while the like-
lihood functions incorporate empirical information on the
equation of state close to nuclear saturation density and for
nearly isospin-symmetric matter. From this analysis, we
demonstrate that an accurate description of the neutron star
pressure at twice saturation density correlates strongly with
the neutron star tidal deformability (see also Refs. [23,24]).
This work builds upon previous studies [25–27] in which
constraints from chiral effective field theory have been
implemented in mean field modeling of the nuclear energy
density functional.
Chiral effective field theory has been used in the past to

predict neutron star radii andmasses [28,29] and their impact
on gravitational wave measurements [30] by extending the
neutron matter equation of state to higher densities using
piecewise polytropes. For instance, a 1.4 M⊙ neutron star
was found to have a radius in the range 9.5 < R < 13.5 km.
The stiffest equations of state considered in Ref. [28]
generate neutron stars with a maximum mass up to nearly
Mmax ¼ 3 M⊙. Recent numerical relativity simulations [6–8,
10,11] that place an upper bound on the maximum mass of a
nonrotating spherical neutron star, Mmax ≲ 2.15–2.30 M⊙,
may therefore help to rule out possible equations of state
generated from extrapolating chiral effective field theory
results to higher densities and thereby better constrain our
theories of dense nuclear matter.
A main purpose of the present Letter is to investigate

as well the extent to which lower bounds on the tidal
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deformability [9] can reduce the range of allowed neutron
star equations of state. In our modeling, the maximum
neutron star mass falls below aboutM < 2.3 M⊙, but many
of the equations of state produce 1.4 M⊙ neutron stars with
small tidal deformabilities. In particular, the suggested [9]
lower bound on the binary tidal deformability Λ̃ > 400
would rule out a large fraction of our equations of state and
have important implications for lower bounds on neutron
star radii.
We take as a starting point for the discussion a model of

the bulk matter nuclear energy density functional of the
form

Eðn; xÞ ¼ 1

2m
τn þ

1

2m
τp

þ ð1 − 2xÞ2fnðnÞ þ ½1 − ð1 − 2xÞ2�fsðnÞ; ð1Þ

where n is the nucleon number density, τn and τp are the
neutron and proton kinetic energy densities, x is the
proton fraction, fsðnÞ ¼

P
3
i¼0 ain

ð2þi=3Þ, and fnðnÞ ¼P
3
i¼0 bin

ð2þi=3Þ has the same functional form with different
expansion coefficients. We assume a quadratic dependence
of the energy per particle on the isospin asymmetry,
δnp¼ðnn−npÞ=ðnnþnpÞ, as in Refs. [31–34]. Variational
calculations performed by Lagaris and Pandharipande [35]
found that higher-order terms are negligible, even though
a power series expansion in δnp generically breaks down
[36,37].
Joint probability distributions for the ai and bi coef-

ficients can be obtained either from laboratory measure-
ments of nuclei or from chiral effective field theory
calculations of the nuclear equation of state. Given that
chiral effective field theory provides a model-independent
low-energy expansion of nuclear observables, where none
of the parameters are fine tuned to the properties of
bulk matter, we use the generated equations of state up
to the density n ¼ 2n0, where n0 ¼ 0.16 fm−3, to define
prior distribution functions for the ai and bi. From the mean
vectors and covariance matrices, we construct multivariate
normal distributions for the (uncorrelated) ai and bi
parameter sets. We then incorporate empirical information
for the nuclear matter saturation density n0, saturation
energy B, incompressibility K, and skewness parameter Q
into likelihood functions (see also Ref. [38]) from which we
construct the final posterior distributions for the ai. For the
neutron matter equation of state, we include empirical
constraints on the isospin-asymmetry energy J, its slope
parameter L, curvature Ksym, and skewness Qsym to derive
likelihood distributions involving the bi. We neglect
correlations between the symmetric nuclear matter and
pure neutron matter bulk properties, since the uncertainties
in J, L, Ksym, and Qsym are much larger than their
counterparts in symmetric nuclear matter.
The chiral interactions considered in the present analysis

have been used extensively in studies of nuclear dynamics

and thermodynamics (for recent reviews, see Refs. [39,40]).
While the neutron matter equation of state is better con-
strained at low densities relative to the symmetric nuclear
matter equation of state, at around twice nuclear saturation
density the uncertainties are comparable [40–42]. Three-
body forces are included at next-to-next-to-leading order
(N2LO) in the chiral expansion, and progress toward the
consistent inclusion of N3LO three-body forces is being
made [43,44]. In order to estimate the theoretical uncertain-
ties, we vary (i) the resolution scale Λχ ≃ 400–500 MeV,
(ii) the chiral order of the underlying nucleon-nucleon
interaction [41,45–48] from N2LO to N3LO, and (iii) the
order of the calculation in many-body perturbation theory.
We have also reduced the fitting range from ρ ≤ 0.32 to ρ ≤
0.25 fm−3 in order to check that our results are not especially
sensitive to the choice of the transition density. In the inset
to Fig. 1, we show the resulting nuclear (red) and neutron
matter (blue) equation of state probability distributions up to
n ¼ 2n0 from the prior probability distributions forai andbi.
Gaussian likelihood functions incorporating empirical

constraints on the quantities n0, B ¼ −ðE=AÞjn0 , K ¼
9n2(∂2ðE=AÞ=∂n2)jn0 , and Q ¼ 27n3(∂3ðE=AÞ=∂n3)jn0
are obtained from Ref. [49] by analyzing 205 Skyrme force
models. The marginal normal distributions for the nuclear
matter properties have means and standard deviations:
n0 ¼ 0.160� 0.003 fm−3, B¼15.939�0.149MeV, K ¼
232.65� 7.00 MeV, and Q ¼ −373.26� 13.91 MeV. In
Fig. 1, the blue band is the resulting probability distribution
for the nuclear matter equation of state up to n ¼ 1.0 fm−3

obtained from the posterior probability distribution for theai.
For the equation of state of pure neutron matter, we

construct the likelihood function involving the bi starting

FIG. 1. Probability distributions for the symmetric nuclear
matter (blue) and neutron matter (red) equations of state up to
n ¼ 2n0 sampled from prior distributions derived from chiral
EFT (inset). Equations of state up to n ¼ 1.0 fm−3 sampled from
posterior distributions for ai and bi in Eq. (1). The dashed lines
denote the 1σ and 2σ probability contours.
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from a conservative empirical constraint on the nuclear
isospin-asymmetry energy J ¼ 31� 1.5 MeV [50]. To
obtain constraints on the isospin-asymmetry slope param-
eter L, curvature Ksym, and skewness parameter Qsym, we
employ recent universal relations derived within a Fermi
liquid theory description of nuclear matter [51]. This allows
us to obtain the multivariate likelihood function associated
with the bi parameters. The red band in Fig. 1 shows the
resulting neutron matter equation of state probability
distribution function up to n ¼ 1.0 fm−3 obtained by
sampling over the posterior.
Once the energy density functionals in Eq. (1) are

obtained, we construct the neutron star equation of state
from the outer crust to the inner core. Certain combinations
of the neutron matter and nuclear matter equations of state
lead to unphysical behavior at very high densities. We
ensure that the speed of sound remains subluminal for all
densities present in the neutron star. In the end, we generate
one million samples that we use for subsequent statistical
analysis. Unlike many calculations of the tidal deform-
ability Λ, we construct a realistic crust equation of state by
employing the liquid drop model technique. This is a
unified approach that allows the inclusion of nuclear pasta
phases and is necessary for the consistent treatment of the
neutron star equation of state. Additional details can be
found in Ref. [25].
In Fig. 2, we show the mass vs radius distribution that

results from our Bayesian statistical analysis. We have
shown for comparison in the enclosed dashed region the
mass vs radius constraints obtained by analyzing x-ray
burst data from Steiner et al. [52]. We observe that, for a
1.4 M⊙ neutron star, the radius lies within the range
10.36 < R < 12.87 km and the distribution peaks at
R ≃ 12.10 km. We find a relatively small probability for

obtaining a maximum neutron star mass larger than
Mmax ¼ 2.2 M⊙, but this may be the result of keeping
only the four lowest powers of the Fermi momentum in the
expansion of the energy density functional in Eq. (1) and
the removal of equations of state with superluminal speeds
of sound in our nonrelativistic framework. The recent
numerical relativity simulations [6–8,10,11] that have
predicted upper bounds on the neutron star maximum
mass around Mmax ≃ 2.15–2.30 M⊙ therefore do not
impose additional constraints on our models.
In Fig. 3, we show the dimensionless tidal deformability

and associated statistical uncertainties as a function of the
neutron star mass. The red band denotes the 68% credibility
interval, while the blue band denotes the 95% credibility
interval. For a 1.4 M⊙ neutron star, these bands correspond
to the ranges 256 < Λ < 442 and 136 < Λ < 519, respec-
tively. In contrast to previous work [12], the inferred upper
bound on the tidal deformability Λ < 800 of a 1.4 M⊙
neutron star from GW170817 does not strongly constrain
our modeling. This may be due to the comparatively small
value of the transition density n ¼ 1.1n0 chosen by Annala
et al. at which the equation of state from chiral effective
field theory is replaced by polytropic extrapolations. This
choice was necessitated by the large theoretical uncertain-
ties in Ref. [28] that arose from poorly constrained
low-energy constants associated with the long-range
two-pion-exchange three-body force. Recent analyses
[53,54] have significantly reduced these uncertainties,
enabling the construction of next-generation chiral nuclear
forces [55,56] from which more reliable predictions for
the equation of state beyond n ¼ n0 will be obtained. Our
inclusion of chiral EFT predictions up to n ¼ 0.32 fm−3 in
constructing the prior distribution functions for bi repre-
sents a maximal density limit at which chiral effective field
theory calculations may be reliable, but when we reduced

FIG. 2. Neutron star mass vs radius distribution obtained by
sampling from the posterior distributions for ai and bi in Eq. (1).
The central zone with dashed line represents the allowed area of
mass and radius of neutron stars in Ref. [52].

FIG. 3. Dimensionless tidal deformability Λ as a function of
neutron star mass M obtained from our posterior probability
distributions. The red band is the 68% credibility interval and the
blue band is the 95% credibility interval.

PHYSICAL REVIEW LETTERS 121, 062701 (2018)

062701-3



the fitting range to n ≤ 0.25 fm−3, we found no significant
qualitative differences to our reported results.
Potentially much more restrictive to our present theories

of the dense matter equation of state would be lower bounds
on the tidal deformability, such as the recent suggestion [9]
that Λ̃ > 400 is needed for a binary neutron star merger
remnant to avoid an immediate or short-timescale collapse
to a black hole, where

Λ̃ ¼ 16

13

ðm1 þ 12m2Þm4
1Λ1 þ ðm2 þ 12m1Þm4

2Λ2

ðm1 þm2Þ5
: ð2Þ

In Fig. 4, we plot the probability distributions for Λ̃
assuming a chirp mass M ¼ ðm1m2Þ3=5=ðm1 þm2Þ1=5 ¼
1.188 M⊙ together with the high-spin priors (jχj < 0.89)
and low-spin priors (jχj < 0.05) component mass distribu-
tions given in Ref. [1]. We observe that the binary tidal
deformability distribution peaks at a value of Λ̃ ¼
402.23þ147.72

−183.49 (Λ̃ ¼ 418.11þ142.02
−172.46 ) for high (low) spin,

which extends well below the lower bound predicted in
Ref. [9]. Note that the binary tidal deformability distribu-
tion in Fig. 4 comes from the statistical analysis of
combined binary neutron star mass distributions [1] and
our equation of state Λ distribution, not directly from
gravitational wave analyses.
In the left panel of Fig. 5, we show the correlation

between the tidal deformability Λ of a 1.4 M⊙ neutron star
and its radius R. In the right panel of Fig. 5, we show the
correlation between the tidal deformability Λ of a 1.4 M⊙
neutron star and the pressure p2n0 at n ¼ 2n0. We find
strong correlations in both cases, the latter suggesting that
improved theoretical modeling at n ¼ 2n0 may place
stronger constraints on neutron star tidal deformabilities.
Our Λ vs R correlation is in very good agreement with that
of Ref. [12], which is shown as the dashed curve in the left

panel of Fig. 5. In addition, we derive a second empirical
relationship, which is approximately linear over the range
covered by our results, between the tidal deformability Λ of
a 1.4 M⊙ neutron star and the pressure at twice saturation
density of the form Λ ¼ 31.59 ðp=MeV fm−3Þ − 272.36.
Finally, since neutron star radii are expected to be corre-
lated with the slope of the symmetry energy L at nuclear
saturation density, we anticipate a similar correlation
between L and the tidal deformability. In Fig. 6, we plot
the two-dimensional probability contours for Λ and L for a
1.4 M⊙ neutron star. We naturally expect that larger values
of L are correlated with larger values of the tidal deform-
ability since the former gives rise to a stiffer equation of

FIG. 4. Probability distribution function (PDF) for Λ̃ asso-
ciated with the high-spin priors (jχj < 0.89) and low-spin priors
(jχj < 0.05) mass distributions from the analysis of GW170817
in Ref. [1]. FIG. 5. Probability contour plot for the tidal deformability Λ vs

radius R of a 1.4 M⊙ neutron star (left) and Λ vs the pressure p2n0
of neutron star matter at n ¼ 2n0 (right). The dashed line (left) is
the empirical relation derived in Ref. [12] and the dashed line
(right) is the empirical relation derived in the present analysis.

FIG. 6. Probability contour plot for the tidal deformability Λ
and isospin-asymmetry energy slope parameter L for a 1.4 M⊙
neutron star.
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state and a larger neutron star radius for a given mass. The
present modeling, however, suggests that a precise meas-
urement of Λ may not provide a strong constraint on the
symmetry energy slope parameter L.
Recently, we became aware of a very similar study [57]

that reaches some of the same conclusions as our Letter.
The authors of Ref. [57] employ a different set of chiral
nuclear potential models to construct the neutron matter
equation of state, which they extrapolate to higher densities
using piecewise polytropes. In contrast to our equations of
state, those in Ref. [57] are strongly constrained by new
upper bounds on the maximum neutron star mass. Both
analyses, however, point to the importance of lower bounds
on the tidal deformability for placing limitations on
equation of state modeling. In comparison to Ref. [57],
our predictions for the mass vs radius relation are similar
but we find radii that are systematically lower by about
0.5 km with a larger uncertainty band of Rþ2σ − R−2σ ¼
2.51 km for a 1.4 M⊙ neutron star due to our inclusion of
equations of state with Λ̃ < 400 for equal mass binaries.
In summary, we have computed neutron star masses,

radii, and tidal deformabilities from posterior probability
distributions obtained from chiral effective field theory
priors and likelihood functions derived from empirical data
in the vicinity of normal nuclear matter density. We have
found that the upper bound on the tidal deformability of a
1.4 M⊙ neutron star inferred from GW170817 is already
consistent with the latest theoretical modeling of the
equation of state from chiral effective field theory and
nuclear experiments, but that lower bounds on Λ appear to
be much more important for constraining the equation of
state. We have also derived an empirical correlation
between the tidal deformability of a 1.4 M⊙ neutron star
and the pressure of beta-equilibrated matter at twice nuclear
saturation density. Tightening the upper and lower bounds
on the tidal deformability with future binary neutron star
merger observations, together with upcoming neutron star
mass-radius measurements, will be invaluable for further
constraining the nuclear equation of state. The present
Bayesian modeling provides the framework for such a
program.
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