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We show a relation between entanglement and correlations of any form. The internal entanglement of a
bipartite system, and its correlations with another system, limit each other. A measure of correlations, of
any nature, cannot increase under local operations. Examples are the entanglement monotones, the mutual
information that quantifies total correlations, and the Henderson-Vedral measure of classical correlations.
External correlations, evaluated by such a measure, set a tight upper bound on the internal entanglement
that decreases as they increase, and so does quantum discord.
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Quantum entanglement is a useful resource for many
tasks, such as cryptographic key distribution [1], state
teleportation [2], or clock synchronization [3], to cite just
a few. In more precise terms, it is a quantum resource that
cannot be generated by local operations and classical
communication [4–6]. The corresponding so-called free
states, for which the resource vanishes, are the separable
states, which are themixtures of product states. Accordingly,
entanglement is quantified by measures, termed entangle-
ment monotones, which are non-negative functions of
quantum states that vanish for separable states and are
nonincreasing under state transformations involving only
local operations and classical communication.
Two real systems, whose entanglement is of interest,

are never completely isolated from the surroundings.
Consequently, a third system, which cannot be fully con-
trolled, always comes into play. Using Hamiltonian models
describing the influence of more or less realistic environ-
ments, different dynamic behaviors of the entanglement
have been found, depending, e.g., on whether the environ-
ment is in thermal equilibrium or not. For instance, an initial
entanglement canvanish in finite time [7], or, on the contrary,
entanglement can develop transiently [8,9] or even be steady
[10–12].
The impact of the surroundings on entanglement can also

be approached by studying how entanglement is distributed
between three systems in an arbitrary state. The amounts of
entanglement between one of them and each of the two
other ones constrain each other. This behavior, known as
entanglement monogamy, has first been shown for three
two-level systems and expressed as an inequality involving
a particular entanglement monotone [13]. This inequality
does not hold, in general, for familiar monotones such as
the entanglement of formation or the regularized relative
entropy of entanglement. For these two measures, inequal-
ities involving Hilbert space dimensions explicitly must be
considered [14]. Relations have also been found between

the amounts of entanglement for the three bipartitions of a
tripartite system [15].
Recently, another restriction on the distribution of entan-

glement between three systems has been shown [16]. It is
better understood by considering a finite-dimensional bipar-
tite system, sayA, and any other system, sayB, which can be
seen as the environment of A. It has been found that the
internal entanglement, between the two subsystems ofA, and
the external entanglement, betweenA andB, limit each other.
This relation is expressed by an inequality involving entan-
glement monotones and the Hilbert space dimensions of the
subsystems of A. One may wonder whether this is a specific
property of entanglement or whether a similar relation exists
between internal entanglement and external correlations of
any kind.
In this Letter, we address this issue by using measures of

external correlations, which we term correlation monotones.
Such a measure C is a non-negative function of the state ρ
shared by A and B that vanishes for product states and is
nonincreasing under local operations, which do not affect
either A or B. These are basic requirements for a measure of
correlations, since correlations, whatever their nature, cannot
increasewhenA andB evolve independently.Ourmain result
relies essentially on them. To bemore specific, our derivation
does not require that C is a strict correlation monotone, but
only that it is invariant under unitary local operations and
nonincreasing under operations performed on B. Examples
of correlation monotones are the entanglement monotones,
the mutual information, commonly used to quantify total
correlations, and the Henderson-Vedral (HV) measure of
classical correlations [17]. Quantum discords, on the other
hand, are not correlation monotones [18]. However, the
original quantum discord [19] as measured by A satisfies the
above mentioned properties [20,21], and so our approach
applies to it.
We show in the following that, for an arbitrary finite-

dimensional bipartite system A and any system B, under an
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assumption of continuity usually fulfilled, CðρÞ and the
internal entanglement of A are related to each other. More
precisely, CðρÞ determines a tight upper bound on EðρAÞ,
where ρA is the reduced density operator for A and E is any
convex entanglement monotone that decreases as CðρÞ
increases (see Figs. 1 and 2). As we will see, for familiar
correlation monotones, this bound vanishes when CðρÞ
equals its maximum value, set by the Hilbert space
dimension of A. Moreover, since our result holds when
C is the HVmeasure, it implies that, even when the external
correlations are purely classical, they have a detrimental
influence on internal entanglement.
In the following, λðωÞ refers to the vector made up of the

nonzero eigenvalues of the quantum state ω, in decreasing
order. It is a probability vector; i.e., its components are
positive and sum to unity. If ω is a density operator on the
Hilbert spaceHd of dimension d, λðωÞ belongs to the set Ed
of probability vectors of no more than d components. We
call entropy any non-negative function of the probability
vectors p, which is nondecreasing with disorder, in the
sense of majorization [22], and vanishes for p ¼ 1 [23].
Any entropy has a largest value on Ed, reached for the
equally distributed vector ð1=d;…; 1=dÞ, which is major-
ized by any p ∈ Ed and possibly also for other vectors.
To derive our main result, we use the following three

Lemmas. The proofs of the first and third are given in
the Supplemental Material [24]. The second is proved in
Ref. [16].

Lemma 1.—For any correlation monotone C, there is a
function f of the probability vectors with fð1Þ ¼ 0, such
that, for any global state ρ,

CðρÞ ≤ f(λðρAÞ); ð1Þ

with equality when ρ is pure.
We denote by cd the supremum of f on Ed. Because of

Eq. (1), CðρÞ cannot exceed cd when the Hilbert space of
A is Hd. When C is an entanglement monotone, f is
necessarily an entropy [30]. It is the Shannon entropy h
for many familiar entanglement monotones and for the
HV measure [6,17,31–33]. For robustness and negativity, f
is a function of the Rényi entropy [34–37]. From the Araki-
Lieb inequality SðρÞ ≥ jSðρBÞ − SðρAÞj, where S is the von
Neumann entropy [38], it follows that f ¼ 2h for the
mutual information SðρAÞ þ SðρBÞ − SðρÞ. As mentioned
in the Introduction, the quantum discord as measured
by A, though not a correlation monotone, has the required
properties to satisfy Lemma 1 (see the proof). The
corresponding function f is h [21]. When f is an entropy,
C coincides with an entanglement monotone for pure states
[6,39]. For all the correlation monotones mentioned above,
f equals cd for ð1=d;…; 1=dÞ and for no other vector of
Ed. This means that, on the set of the pure states jψi of
Hd ⊗ Hd0 , where d0 ≥ d, the maximally entangled states
are the only ones for which Cðjψihψ jÞ is maximum.
Lemma 2.—For any convex entanglement monotone E,

and integers d1 ≥ 2 and d2 ≥ d1, there are a positive
number ed1 and an entropy sd1;d2 such that the states ρA
on Hd1 ⊗ Hd2 satisfy

EðρAÞ ≤ ed1 − sd1;d2(λðρAÞ) ð2Þ

and such that, for any p ∈ Ed1×d2 and η > 0, there is ρA for
which λðρAÞ ¼ p and ed1 − sd1;d2ðpÞ − EðρAÞ < η.
This Lemma expresses quantitatively how the mixedness

of a quantum state limits its amount of entanglement [40].
In Ref. [16], ed1 is obtained as the largest value of EðρAÞ for
pure states ρA. Thus, it depends only on d1 [5]. Inequality
(2) shows that it is the maximum of EðρAÞ on the set of all
the density operators ρA onHd1 ⊗ Hd2 . Contrary to ed1 , the
entropy sd1;d2 can depend on both d1 and d2 (see the
Supplemental Material).
Lemma 3.—For any positive integer d, entropy s, and

nonnegative continuous function f of the probability
vectors with fð1Þ ¼ 0, there is a nondecreasing function
gd on I ¼ ½0; cd�, where cd is the maximum of f on Ed,
such that gdð0Þ ¼ 0, gd∘f ≤ s on Ed, and, for any x ∈ I
and η > 0, there is p ∈ Ed for which fðpÞ ¼ x and sðpÞ−
gdðxÞ < η.
If fð1=d;…; 1=dÞ ¼ cd and fðpÞ < cd for any other

p ∈ Ed, then gdðcdÞ ¼ sð1=d;…; 1=dÞ.
Using this Lemmawith the function f given by Lemma 1,

and the entropy sd1;d2 given by Lemma 2, and defining

A BE(ρ )A C(ρ)

FIG. 1. Schematic representation of the systems and correla-
tions considered.
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FIG. 2. Maximum internal entanglement as a function of
external correlations, for a system A consisting of two two-level
systems, the entanglement of formation Ef , and the measure of
total correlations CðDHÞ (solid line). The maximum entanglement
EfðρAÞ for classical-classical states ρ is given by the dashed line.
This line is also the maximum value of EfðρAÞ as a function of
CðDBÞðρÞ for all states ρ.
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ξd1;d2 ¼ ed1 − gd, with d ¼ d1d2, we have the following
result.
Theorem.—LetHd1 ⊗ Hd2 , with d2 ≥ d1, be the Hilbert

space of system A, and d ¼ d1d2.
For a convex entanglement monotone E, and a correla-

tion monotone C such that f is continuous, CðρÞ and EðρAÞ
obey, for any global state ρ,

EðρAÞ ≤ ξd1;d2(CðρÞ); ð3Þ

where ξd1;d2 is a nonincreasing function on ½0; cd� with
ξd1;d2ð0Þ ¼ ed1 . For any amount of correlations x ≤ cd,
there are states ρ such that CðρÞ ¼ x and the two sides of
inequality (3) are as close to each other as we wish.
If fð1=d;…; 1=dÞ ¼ cd and fðpÞ < cd for any other

p ∈ Ed, then ξd1;d2ðcdÞ ¼ 0.
Inequality (3) can be rewritten, in a more familiar form,

as EðA1∶A2Þ ≤ ξd1;d2 ½CðA1A2∶BÞ�, where A1 and A2 are the
two subsystems of A (see Fig. 1) [16]. For any x ∈ ½0; cd�
and small η, Lemmas 2 and 3 ensure that there is a local
state ρA such that ξd1;d2ðxÞ − EðρAÞ < η and f(λðρAÞ) ¼ x.
Because of Lemma 1, all the pure states ρ for which the
reduced density operator for A is ρA are such that CðρÞ ¼ x.
For such global states ρ, EðρAÞ ≃ ξd1;d2(CðρÞ), and an
increase of the correlations between A an B means a
reduction of the internal entanglement of A, and recipro-
cally. In general, the external correlations and the local
entanglement limit each other (see Fig. 2). For any amount
of correlations x ≤ cd, there is no state ρ such thatCðρÞ ¼ x
and EðρAÞ exceeds ξd1;d2ðxÞ. Similarly, for any amount of
entanglement y ≤ ed1 , there is no state ρ such thatEðρAÞ ¼ y
and CðρÞ is larger than the bound given by Eq. (3). On the
contrary, there are no positive lower bounds for EðρAÞ for a
given CðρÞ, and for CðρÞ, for a given EðρAÞ, whatever are
the monotones E and C [41].
For more than two systems, say A;B1; B2;…, different

bounds on the entanglement EðρAÞ can be obtained via
Eq. (3), depending on which systems Bn are taken into
account. Let us first observe that only the systems sharing a
state with genuine multipartite correlations matter [42].
Indeed, if the global state is of the form ρ ¼ ρ̃ ⊗ ρ̂, where ρ̃
is the state of A and some systems Bn, and ρ̂ is the state of
the other systems, then CðρÞ ¼ Cðρ̃Þ, where C measures
the amount of correlations between A and the considered
systems Bn, since ρ and ρ̃ can be transformed into each
other by local operations. For a global state ρ with genuine
multipartite correlations, as tracing out a system Bn is a
local operation and ξd1;d2 is a nonincreasing function, the
lowest bound on EðρAÞ is given by Eq. (3) with the state ρ
of all the systems.
We now consider specific cases for which the boundary

given by Eq. (3) can be determined explicitly. A measure of
total correlations can be defined as a minimal distance to the
set of product states, i.e., CðDÞðρÞ ¼ infδA;δBDðρ; δA ⊗ δBÞ,
where the infimum is taken over all the density operators

of A and B, and D fulfills D½ΛðωÞ;Λðω0Þ� ≤ Dðω;ω0Þ for
any quantum operation Λ. Some possible choices for D are
the relative entropy, the Bures distance DB, or the Hellinger
distance DH [43–45]. For the relative entropy, the above
definition gives the mutual information [44]. For the monot-
ones CðDBÞ and CðDHÞ, an explicit expression for f can be
obtained (see the Supplemental Material). For the entangle-
ment of formation Ef, the entropy s2;2 is known [46]. Using
these results, we find

ξ
Ef;DB

2;2 ðxÞ ¼ u

�
x2 −

x4

4

�
; ξ

Ef;DH

2;2 ðxÞ ¼ u

�
x2

2

�
; ð4Þ

where x varies from 0 to 1 for CðDBÞ and from 0 to
ffiffiffiffiffiffiffiffi
3=2

p
for

CðDHÞ. The expression of u is given in the Supplemental
Material.
Figure 2 displays these two functions. They both vanish

on a finite interval. As a consequence, for any state ρ such
that CðρÞ exceeds a threshold value, the local entanglement
EðρAÞ necessarily vanishes, whereas for any amount of
correlations x below this threshold, there are states ρ such
that CðρÞ ¼ x and ρA is entangled. The existence of this
threshold also implies that CðρÞ is at a finite distance from
the maximum value cd as soon as EðρAÞ is not zero. As
shown in the Supplemental Material, this feature is not
specific to the particular cases considered above. Moreover,
the threshold is the same for all the monotones E vanishing
only for separable states.
As seen above, for some correlation monotones, CðρÞ ¼

cd ensures the vanishing of EðρAÞ. On the contrary, for any
monotonesC and E, and dimension d1, there are states ρ for
whichEðρAÞ ¼ ed1 andCðρÞ is as high as wewish, provided
d2 is large enough. They are pure states ρ such that the
reduced density operator ρA ¼ P

ipijϕiihϕij is a mixed
maximally entangled state [47]. That is to say, the eigen-
vectors of ρA are of the form jϕii ¼

Pd1
j¼1 jji1jiji2=

ffiffiffiffiffi
d1

p
,

where jji1 are orthonormal states of Hd1 , and jiji2 of Hd2 ,
i.e., 2hijji0j0i2 ¼ δi;i0δj;j0 . As ρ is pure, CðρÞ ¼ fðpÞ, and,
providedd2=d1 is large enough, there isp such thatCðρÞ ≥ x,
where x is any amount of correlations. For any entanglement
monotone E, EðρAÞ ¼ Eðjϕ1ihϕ1jÞ ¼ ed1 , since ρA and
jϕ1ihϕ1j can be transformed into each other by local
operations that do not affect one subsystem of A [48].
Note that, though EðρAÞ ¼ ed1 does not imply CðρÞ ¼ 0

in general, this is true for the entanglement of formation Ef

and d2 < 2d1, since, for such dimensions, the only states ρA
for which EfðρAÞ is maximum are pure [47].
The above Theorem applies to many kinds of external

correlations, as discussed below Lemma 1. When C is
an entanglement monotone, it generalizes previously
obtained results [16]. As mentioned above, C can also
be a measure of total correlations or the HV measure of
classical correlations. For this last correlation monotone,
Eq. (1) is an equality for some classical-classical states
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ρ ¼ P
i;jpijjiiAAhij ⊗ jjiBBhjj, where jiiA and jiiB are

orthonormal states of A and B, respectively, and pij are
probabilities summing to unity [49,50]. They are the
strictly correlated classical-classical states, i.e., such that
pij ¼ piδi;j [17]. Consequently, there are not only pure
states but also classical-classical states close to the
boundary given by Eq. (3), for any amount of correlations.
Moreover, since ξd1;d2ðcdÞ ¼ 0, this shows that, even when
external correlations are purely classical, the maximum
accessible local entanglement decreases to zero as they
increase.
In general, it can be proved that the classical-classical

states ρ obey Eq. (1) with f replaced by a function f̃ ≤ f,
such that CðρÞ ¼ f̃(λðρAÞ) when ρ is strictly correlated
(see the Supplemental Material). Provided f̃ is continuous,
it follows that, for a classical-classical state ρ, EðρAÞ and
CðρÞ satisfy Eq. (3) with ξd1;d2 replaced by an a priori
different function ζd1;d2 . When C is an entanglement
monotone, this is meaningless, since CðρÞ ¼ 0 for all
classical-classical states ρ. As seen above, for the HV
measure, ζd1;d2 ¼ ξd1;d2 . For other correlation monotones,
they obviously fulfill ζd1;d2 ≤ ξd1;d2 . For the measure of
total correlations CðDHÞ and the entanglement of formation

Ef, we find ζ
Ef;DH

2;2 ¼ ξ
Ef;DB

2;2 (see the Supplemental Material
and Fig. 2). For the mutual information, f̃ is the Shannon
entropy h. For this correlation monotone, inequality (1)
with h in place of f, and hence EðρAÞ ≤ ζd1;d2(CðρÞ), is
actually valid for all separable states ρ, as SðρBÞ ≤ SðρÞ
for any separable state ρ [51], and since f ¼ 2f̃ ¼ 2h,
ζd1;d2ðxÞ ¼ ξd1;d2ð2xÞ, where x ∈ ½0; ln d�, for any entan-
glement monotone E.
We finally discuss the relations of other local properties

to external correlations. A first natural question is whether
E can be replaced by any correlation monotone in inequal-
ity (3). Lemma 2 is not specific to entanglement monot-
ones. It only requires that E is convex [16]. Many familiar
entanglement monotones are convex, though this is not a
basic requirement for such a measure [6]. For other
correlation monotones, imposing convexity can lead to
some difficulties. A convex correlation monotone is nec-
essarily zero for all separable states. The measures of total
correlations considered above do not vanish for all sepa-
rable states, by construction, and are hence not convex.
Consequently, the above derivation of Eq. (3) does not
apply if E is replaced by any one of these measures.
Entanglement is not the only quantum resource for which
there are measures that vanish only for free states and are
convex. Other examples are the nonuniformity, which can
be quantified by ln d − SðρAÞ for a system A of Hilbert
space dimension d [52], and the coherence, which can be
quantified by −

P
ipi lnpi − SðρAÞ, where pi ¼ hijρAjii

and fjiigi is the basis with respect to which the incoherent
states are defined [53]. In both these cases, inequality (3) is
satisfied with the above corresponding measure in place of

E, ln d − x in place of ξd1;d2ðxÞ, and any correlation
monotone C for which f ¼ h [16]. A relation of the form
of Eq. (3) can also be obtained for contextuality quanti-
fiers [30,54].
In summary, we have shown that internal entanglement

and external correlations limit each other, whatever the
nature of the correlations. For a given amount of external
correlations CðρÞ, the internal entanglement EðρAÞ can
approach but not exceed a value that decreases with
increasing CðρÞ, and reciprocally. For familiar correlation
monotones, EðρAÞ vanishes when the correlations are
maximal. The entanglement can even be suppressed for
lower values of CðρÞ. In two particular cases, we have
determined explicitly the tight upper bound on EðρAÞ set by
CðρÞ and found that the entanglement vanishes when the
amount of correlations is above a threshold value. Such a
threshold also exists for other entanglement and correlation
monotones. On the contrary, a maximum internal entan-
glement does not always ensure that the external correla-
tions vanish, due to the existence of mixed maximally
entangled states [47]. If E is the entanglement of formation,
e.g., this is only true if none of the subsystems of A has a
Hilbert space dimension larger, or equal, than twice that of
the other one. As we have seen, the generalization of our
result to other internal correlations is not obvious with the
approach we have used. But it may be correct, and it would
be of interest to determine whether this is indeed so.
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