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We establish a large deviation principle for the Kardar-Parisi-Zhang (KPZ) equation, providing precise
control over the left tail of the height distribution for narrow wedge initial condition. Our analysis exploits
an exact connection between the KPZ one-point distribution and the Airy point process—an infinite
particle Coulomb gas that arises at the spectral edge in random matrix theory. We develop the large
deviation principle for the Airy point process and use it to compute, in a straightforward and assumption-
free manner, the KPZ large deviation rate function in terms of an electrostatic problem (whose solution we
evaluate). This method also applies to the half-space KPZ equation, showing that its rate function is half of
the full-space rate function. In addition to these long-time estimates, we provide rigorous proof of finite-
time tail bounds on the KPZ distribution, which demonstrate a crossover between exponential decay with
exponent 3 (in the shallow left tail) to exponent 5=2 (in the deep left tail). The full-space KPZ rate function
agrees with the one computed in Sasorov et al. [J. Stat. Mech. (2017) 063203] via a WKB approximation
analysis of a nonlocal, nonlinear integrodifferential equation generalizing Painlevé II which Amir et al.
[Commun. Pure Appl. Math. 64, 466 (2011)] related to the KPZ one-point distribution.
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Since its birth in 1986, the Kardar-Parisi-Zhang (KPZ)
equation [1] has been applied to describe growth of
interfaces [2], transport in one-dimension (1D) and
Burgers turbulence [3], directed polymers [4], chemical
reaction fronts [5], bacterial growth [6], slow combustion
[7], coffee stains [8], conductance fluctuations in Anderson
localization [9], polar active fluids [10], Bose Einstein
superfluids [11], and quantum entanglement growth [12].
Whereas some stochastic models (e.g., exclusion proc-

esses [13], random permutations [14], random walks in
random media [15]) are directly related (via mappings to
“height functions”) to the universality class for the 1D KPZ
equation; others—namely, random matrix theory (RMT)—
rely on hidden connections to KPZ, which are only seen
from exact solutions to both KPZ and RMT models [16]. In
this Letter, we describe such a relationship between the
KPZ equation and the Airy point process—an infinite
particle Coulomb gas [17] that arises at the spectral edge in
random matrix theory—and exploit variational techniques
of electrostatics to precisely quantify the large fluctuations
for the KPZ equation.
The 1D KPZ equation describes the stochastic growth of

an interface of height hðt; xÞ at x ∈ R and time t > 0

∂th ¼ ∂2
xhþ ð∂xhÞ2 þ ξðt; xÞ; ð1Þ

in convenient units, starting from an initial condition
hðt ¼ 0; xÞ. Here ξðx; tÞ is a centered Gaussian white noise

with ξðt; xÞξðt0; x0Þ ¼ 2δðx − x0Þδðt − t0Þ and � � � denotes
expectations with respect to this noise. Typically, the
fluctuations of the height field scale, at large time, like
t1=3. Recent progress has yielded exact solutions for the
probability density function (PDF) of the height at a given
space point at arbitrary timewhen starting from special initial
conditions (e.g., droplet, flat, stationary) [18–20]. Focusing
here and below on the droplet (also known as the narrow
wedge) initial condition, hð0; xÞ ¼ −ðjxj=δÞ − lnð2δÞ for
δ ≪ 1, the exact formula for the PDF is expressed in terms
of a Fredholm determinant. Using this, the scaled and
centered height HðtÞ=t1=3, where HðtÞ ¼ hðt; 0Þ þ ðt=12Þ,
was shown to converge in law as t → þ∞ to the Tracy-
Widom GUE distribution, which also describes the fluctua-
tions of the largest eigenvalue, λmax, of a large randommatrix
from the Gaussian unitary ensemble (GUE).
Despite considerable interest, much less is known about

large deviations and tails of the KPZ field or PDF
PðH; tÞ ¼ ð∂=∂HÞPðHðtÞ ≤ HÞ. For general nonequili-
brium systems, large deviation rate functions play a role
similar to the free energy or entropy in equilibrium systems
(see Ref. [21] and references therein). Existing large
deviation theories fail to apply in the KPZ growth setting.
The macroscopic fluctuation theory [22] requires local
thermodynamic equilibrium, not realized here. The weak
noise theory (see, e.g., Ref. [23]) applies, but only at very
short times. Understanding the large deviations for the KPZ
equation poses an important conceptual challenge.
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Quantitative control over the tails of the KPZ equation
plays an important role in experimental and numerical
works. Precise results can be used, e.g., as benchmarks for
broadly applicable numerical Monte Carlo methods such as
those used in Ref. [24]. In experimental work (such as
reviewed in Ref. [25]), the tail behavior we are probing
corresponds to excess growth. While unlikely at a single
point, if the growing substrate is sufficiently long, disparate
regions (spaced as time2=3) will see roughly independent
growth. Hence, by standard extreme-value theory, the
maximal and minimal height of the entire substrate will
be determined by the one-point tail behaviors. The KPZ
equation also models semiconductor film growth [26]. In
technological applications, the roughness of these films
determines device performance. As many films are grown
independently, large deviations dictate failure rates.
In population growth and mass transport models, the

KPZ tails play contribute to multifractal intermittency [27].
The H=t1=3 ≫ 1 tail is associated with excess mass growth
which comes from locally favorable effects; in contrast, the
−H=t1=3 ≫ 1 tail is associated with mass die-out, which
arises from collective effects of wide-spread unfavorable
growth regions. Because of this collective effect, the left tail
is intrinsically more difficult to analyze at large time.
A similar situation arises in RMT for the tails of the PDF of
λmax: while positive fluctuations arise from the largest
eigenvalue λmax simply detaching from the bulk of the
spectrum, negative ones require a reorganization of the
entire Wigner semicircle density of eigenvalues (the pushed
Coulomb gas) [28]. This analogy leads to the prediction
[29] that for t ≫ 1 and large fluctuations jHj ∼ t the right
tail (H ≫ 0) scales as − lnPðH; tÞ ∼ t while the left tail
(H ≪ 0) scales as − lnPðH; tÞ ∼ t2.
For short times t ≪ 1 the left tail of the PDF (H ≪ 0)

behaves as PðH; tÞ ∼ exp½−ð4=15πÞjHj5=2=t1=2�, as was
shown analytically (via weak noise theory and exact
solutions) [30,31] and numerically [24] (see also
Refs. [23,32,33] for other initial conditions). Extracting
this tail in the intermediate or large time limit is much
harder. For t ≫ 1, in the typical scaling regionH ∼ t1=3, the
left tail should behave like the Tracy-Widom GUE dis-
tribution, i.e., PðH; tÞ ∼H→−∞ expð− 1

12
jHj3=tÞ. Until

recently, nothing was known about how far this cubic
exponent persists into the very far left tail region jHj ∼ tα

with α > 1=3, or whether it holds for intermediate times.
Given the similarities between the KPZ and RMT

problems, it is natural to try to attack these tail questions
using methods inspired by RMT. The left tail behavior for
λmax can be accessed by either (i) the Coulomb-gas and
associated electrostatic variational problem for the GUE
spectrum [28,34] (see also Ref. [35] for other large
deviation applications of the Coulomb gas) or (ii) the
relationship between gap probabilities and certain classical
integrable systems [36] (which, in N → ∞ edge limit,
relate to the Painlevé II equation [37]). Reference [19]

introduced a nonlocal, nonlinear integrodifferential
equation which generalizes Painlevé II by including a
“Fermi factor,” and showed that its solution relates to
the KPZ PDF. Studying this generalized equation via
standard “integrable-integral operator” methods [38]
involves an infinite-dimensional Riemann-Hilbert problem
steepest descent analysis which is beyond current tech-
niques. Employing a certain approximation ansatz [29]
attempted to analyze this equation. While they successfully
predicted the scaling form for the large deviation tail
PðH; tÞ ∼ exp½−t2Φ−ðH=tÞ� for −H ∼ t ≫ 1, the approx-
imations were too reductive and Ref. [29] predicted
Φ−ðzÞ ¼ 1

12
jzj3, which turns out only to hold true for z

near 0. Reference [39] revisited this analysis and employed
a WKB approximation along with a “self-consistency”
ansatz for the form of the solution to a Schrödinger
equation in which the potential depends upon the solution.
Given these assumptions, Ref. [39] extracted a formula

Φ−ðzÞ ¼
4

15π6
ð1 − π2zÞ5=2 − 4

15π6
þ 2

3π4
z −

1

2π2
z2; ð2Þ

which predicts a crossover between Φ−ðzÞ ≃z→−∞
ð4=15πÞjzj5=2 and ≃z→−0

1
12
jzj3. This, taken with the

short-time estimates, suggests that the jHj5=2 tail remains
valid at all times (see also Ref. [24] and Refs. [23,30,32])
and that there is a crossover between the 1

12
jHj3=t and

ð4=15πÞjHj5=2=t1=2 tail when jHj ≈ t (once t ≫ 1).
The purpose of this Letter is to demonstrate how the

Coulomb gas can be utilized in a straightforward and
assumption-free manner to (i) establish, using the large
deviations for the Airy point process, an electrostatic
variational formula for Φ−ðzÞ whose solution (which we
derive) agrees with Eq. (2), and (ii) demonstrate the first
precise tail bounds (13) that are valid for all intermediate
and long times and which capture the crossover between
the 1

12
jHj3=t tail for jHj ≪ t and the ð4=15πÞjHj5=2=t1=2 tail

for jHj ≫ t. Our work provides a description of the
intermediate and late time left large deviations for the
KPZ equation where the connection to RMTand the role of
the collective effects is explicit: each fixed value of
z ¼ H=t corresponds to an optimal eigenvalue density
(see Fig. 1). Finally, we extend our study to the half-line
KPZ equation in the critical case, which relates to the
Gaussian orthogonal ensemble (GOE), leading (via our
RMT approach) to the rate function Φhalf-space

− ðzÞ ¼
1
2
Φfull-space

− ðzÞ.
Our starting point is a remarkable identity [41,42],

obtained from the exact solution of the droplet initial
condition [18,19], which directly connects KPZ and
RMT (as well as fermions in a harmonic well at temper-

ature of order t−1=3 [43]): for φt;sðaÞ ¼ logð1þ et
1
3ðaþsÞÞ,
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expð−eHðtÞþst1=3Þ¼EAiry

�
exp

�
−
X∞
i¼1

φt;sðaiÞ
��

: ð3Þ

The left-hand side (l.h.s.) is an expectation over the KPZ
white noise giving access to PðH; tÞ while the right-hand
side (r.h.s.) is the expectation of a Fermi factor over the
Airy point process (Airy PP) generating the set faig ∈ R.
The Airy PP describes the largest few eigenvalues of a large
GUE matrix. It is a “determinantal” measure on infinite
point configurations a ¼ ða1 > a2 > � � �Þ on R which
means that for all k ≥ 1, the kth correlation function
ρkðx1;…; xkÞ (which equals the probability density for
the event that fxi ∈ a; for all 1 ≤ i ≤ kg) takes the
form ρkðx1;…; xkÞ ¼ det½Kðxi; xjÞ�1≤i;j≤k for some fixed
“correlation kernel” K∶R2 → C. The Airy PP correlation
kernel is KAiðx; yÞ ¼

R
∞
0 Aiðxþ rÞAiðyþ rÞdr. In

particular, the mean density is ρðaÞ ¼ ρ1ðaÞ ¼
KAiða; aÞ ≃a→−∞ π−1

ffiffiffiffiffiffijajp
. This agrees with the square-

root behavior of the Wigner semicircle at the edge.
Remarkably, the jHj5=2 tail emerges quite simply from
this

ffiffiffiffiffiffijajp
density as we show from the first term in the

cumulant expansion of the right-hand side of Eq. (3); see
Eq. (6). After observing this, we describe the Airy PP large
deviation principle (LDP) derived via Coulomb gas, and
use it to compute the full crossover rate function Φ−ðzÞ.
Finally, we provide the bounds (13) which describes
intermediate time behavior of the tail.
Cumulant expansion.—As st

1
3 → ∞ the l.h.s. of Eq. (3)

approaches P½HðtÞ≤−st13�¼P½HðtÞ≤zt� with z¼−st−2=3.
The r.h.s. of Eq. (3) is evaluated via cumulants as

log½r:h:s:ð3Þ� ¼
X∞
n¼1

κn
n!

; ð4Þ

where κn is the nth cumulant of the Airy PP whose general
form is known [44], e.g., for n ¼ 1, 2,

κ1 ¼ −Trðφt;sKAiÞ ¼ −
Z þ∞

−∞
daφt;sðaÞρðaÞ: ð5Þ

and κ2 ¼ Trðφ2
t;sKAiÞ − Trðφt;sKAiφt;sKAiÞ, where

ðψKÞðx;yÞ¼ψðxÞKðx;yÞ, TrK ¼ R
R daKða; aÞ. In the limit

z → −∞, it is sufficient to keep only the first cumulant (the
n ¼ 1 term) in Eq. (4), which, using the above asymptotics
ρðaÞ ≃a→−∞ π−1

ffiffiffiffiffiffijajp
, is estimated as (we use the notation

ð·Þþ ¼ maxð·; 0Þ below)

κ1 ≃ −t1=3
Z þ∞

−∞
daðaþ sÞþρðaÞ

≃ −t1=3
4

15π
s5=2 ¼ −t2

4

15π
jzj5=2: ð6Þ

This simple argument gives the leading behavior as
z → −∞ of the left large deviation rate function, Φ−ðzÞ≃
ð4=15πÞjzj5=2, hence, the desired jHj5=2 tail. Explicit calcu-
lation (see Ref. [45]) of the next higher cumulants,

κ2≃ t2=3
s2

π2
¼ t2

z2

π2
; κ3≃−t

4jsj3=2
π3

¼−t2
4jzj3=2
π3

; ð7Þ

shows their subdominance both (i) for−z ≫ 1with t ≫ 1 and
z ¼ H=t fixed and (ii) t fixed and large s ¼ −H=t1=3 and
reproduces the large jzj expansion of Eq. (2).
Coulomb-gas and large deviation rate function.—Using

Eq. (3), Φ−ðzÞ can be computed as (write E for EAiry)

Φ−ðzÞ ¼ lim
t→∞

1

t2
logE

�
exp

�
−
X∞
i¼1

φt;−zt2=3ðaiÞ
��

:

For large t, we have φt;−zt2=3ðt2=3aÞ ≈ tða − zÞþ. Let
μtðaÞda ¼ t−1

P
i≥1δ−t−2=3aiðaÞda denote the scaled,

space-reversed Airy PP empirical measure. Then we have

Φ−ðzÞ ¼ lim
t→∞

1

t2
logE

�
exp

�
−t2

Z
R
daμtðaÞð−z − aÞþ

��
:

ð8Þ

Like the GUE, the Airy PP should enjoy an LDP so
that for a suitable class of functions μ, Pðμt ≈ μÞ≈
exp½−t2IAiryðμÞ�. To our knowledge, this rate function is
not in the literature, and we describe it below and in
Ref. [46]. Given this, the r.h.s. of Eq. (8) can be evaluated
via a variational problem, Φ−ðzÞ ¼ minμΣðμÞ, with cost
function

ΣðμÞ ¼
Z
R
daμðaÞð−z − aÞþ þ IAiryðμÞ: ð9Þ

To derive the LDP for the Airy PP we will appeal to the
fact that the Airy PP arises as an edge limit of the GUE. The
GUE spectrum is a 1D Coulomb gas with logarithmic

FIG. 1. Optimal density μ�ðaÞ at z ¼ −1 compared to μAiryðaÞ.
The density μ� has a log singularity at a ¼ −z (cf. Ref. [40] for
another Coulomb gas problem with similar behavior).
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interaction which immediately leads to an electrostatic
variational formulation for the GUE LDP [17,34] (with
the Wigner semicircle representing the minimizer of this
electrostatic energy). Our approach is to rewrite the GUE
LDP in such a manner that it admits an edge scaling limit to
yield the Airy PP LDP.
Recall from Ref. [34] that the empirical measure

ΛNðλÞdλ ¼ ð1=NÞPN
i¼1 δλiðλÞdλ associated to the eigen-

values fλ1;…;λNg of the GUE (normalized to have typical
support ½−2; 2�—see Ref. [46] for a precise definition)
enjoys an LDP so that, for a generic density Λ with unit
mass, PðΛN ≈ ΛÞ ≈ exp½−N2I2ðΛÞ�. The rate function
IβðΛÞ is the difference of the electrostatic energy of a
Coulomb-gas of charge β (with β ¼ 2 for GUE, and β ¼ 1
for GOE) with density Λ, as compared to that of the Wigner
semi-circle density ΛscðλÞ ¼ ð1=2πÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
4 − λ2

p
1fjλj<2g. Iβ can

be rewritten (see Ref. [46] for details) as

IβðΛÞ ¼
β

2
JðΛÞ þ β

2

Z
R
dλVðλÞΛðλÞ; ð10Þ

with a Coulomb interaction term JðΛÞ ¼ −
R
R2 log jλ1 −

λ2j
Q

2
i¼1 dλi½ΛðλiÞ − ΛscðλiÞ� (note that Λ − Λsc is a signed

density with integral over R equal to 0) and potential term

VðλÞ ¼ R jλj
0 dλ0½ðλ02 − 4Þþ�1=2. The (space-reversed) Airy

PP arises as a scaling limit of the GUE spectrum near its
lower edge λ ¼ −2. To deduce the Airy PP LDP from that
of the GUE, we introduce the scaling λ ¼ −2þ t2=3N−2=3a.
As N → ∞, NdλΛNðλÞ ≃ tdaμtðaÞ, which when inserted
into Eq. (10) gives N2IβðΛÞ ≃ t2IAiryðμÞ, with

IAiryðμÞ ¼ JAiryðμÞ þ UðμÞ:

Here, JAiryðμÞ¼−
R
log ja1−a2j

Q
2
i¼1dai½μðaiÞ−μAiryðaiÞ�

is defined for densities μ satisfying mass conser-
vation

R
da½μðaÞ − μAiryðaÞ� ¼ 0, where μAiryðaÞ ¼

ð1=πÞ ffiffiffi
a

p
1fa>0g, and UðμÞ ¼ 4

3

R
0
−∞ dajaj32μðaÞ.

Instead of searching directly for the minimum of Σ in
Eq. (9), we first consider a simpler cost function

ΣJðμÞ ¼
Z
R
dað−z − aÞþμðaÞ þ JAiryðμÞ;

that drops the term UðμÞ. The minimizer μ� of ΣJ is the
unique measure (see Ref. [46] for details) such that

ð−z−aÞþ−2

Z
R
da0 logja−a0j½μ�ða0Þ−μAiryða0Þ�≥c; ð11Þ

for some constant cwith strict equality on the support of μ�.
Differentiating the l.h.s. of Eq. (11) in a yields

−1fa<−zg − 2

Z
R
da0

μ�ða0Þ − μAiryða0Þ
a − a0

: ð12Þ

Consider a generic interval ½u;∞Þ and let

μ�;uðaÞ ¼
�
1

π

ffiffiffiffiffiffiffiffiffiffiffi
a − u

p þ 1

2π2
log

����
ffiffiffiffiffiffiffiffiffiffiffi
a − u

p þ ffiffiffi
v

p
ffiffiffiffiffiffiffiffiffiffiffi
a − u

p
−

ffiffiffi
v

p
����

þ 1

π

�
u
2
−

ffiffiffi
v

p
π

�
1ffiffiffiffiffiffiffiffiffiffiffi
a − u

p
�
1fa>ug;

where v ¼ −z − u. Reference [46] verifies that substituting
this density μ�;uðaÞ for μ�ðaÞ implies that Eq. (12)¼ 0

on ½u;∞Þ. Furthermore, Ref. [46] shows that u ¼ u0 ¼
ð2=π2Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − π2z

p
− 1Þ is the unique choice of u for which

one also has Eq. (12)≥ 0 on ð−∞; u0Þ and ¼ 0 on ½u0;∞Þ.
This means that μ�ðaÞ ¼ μ�;u0ðaÞ satisfies Eq. (11) and
hence is the unique minimizer of ΣJ. Evaluating yields (see
Fig. 1)

μ�ðaÞ ¼
�
1

π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a − u0

p þ 1

2π2
log

����
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a − u0

p þ π
2
u0ffiffiffiffiffiffiffiffiffiffiffiffiffi

a − u0
p − π

2
u0

����
�
1fa>u0g:

The associated minimum of ΣJ is

min
μ
ΣJðμÞ ¼

4

15π6
ð1 − π2zÞ52 − 4

15π6
þ 2

3π4
z −

1

2π2
z2;

which coincides precisely with Φ−ðzÞ in Eq. (2).
Returning to Σ from Eq. (9), we note that UðμÞ ≥ 0

implies ðminΣÞ ≥ ðminΣJÞ. Since μ�ðaÞ vanishes for
a < 0 (since u0 > 0), we have Uðμ�Þ ¼ 0 and, hence,
Σðμ�Þ ¼ ΣJðμÞ. Thus, the minimizer and minimum for ΣJ
in fact also applies to Σ. Since Φ−ðzÞ ¼ minμΣðμÞ, this
confirms the formula in Eq. (2) and the calculation
of Ref. [39].
Tail bounds for intermediate times.—While the KPZ

LDP holds for t → ∞, the crossover behavior between
exponents 3 and 5=2 remains valid at all intermediate times.
Precisely: For any ε; δ ∈�0; 1

3
½ and t0 > 0 then there exists

constants S ¼ Sðε; δ; t0Þ, K1 ¼ K1ðε; δ; t0Þ > 0, and K2 ¼
K2ðt0Þ > 0 such that for all s ≥ S and t ≥ t0,

PðH ≤ −st13Þ ≤ e−
4ð1−εÞ
15π t

1
3s

5
2 þ e−K1s3−δ−εt

1
3s þ e−

1−ε
12
s3 ;

PðH ≤ −st13Þ ≥ e−
4ð1þεÞ
15π t

1
3s5=2 þ e−K2s3 : ð13Þ

For t2=3 ≫ s ≫ 1, the second and third terms in the first
line of Eq. (13) dwarf the first term and represent cubic
decay (in the exponential) in s. In particular, as t gets large,
only the third term survives and we recover (up to an ε
correction) the predicted 1

12
s3 decay. On the other hand, for

s ≫ t2=3 the first term in the second line of Eq. (13) dwarfs
the others and recovers the predicted ð4=15πÞs5=2 decay for
all t. The second line of Eq. (13) contains corresponding
lower bounds—though notice that for t large and
t2=3 ≫ s ≫ 1, our bounds do not recover the 1

12
constant
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for the lower bound on the cubic decay. This result recovers
the large and small z behavior of the t → ∞ rate function
Φ−ðzÞ. Prior to Eq. (13), the only finite time bounds were in
Ref. [47], which provided a Gaussian upper bound on the
decay (hence, the wrong exponent). Moreover, those
bounds are not adapted to large t center and scaling—
becoming ineffective as t grows.
Equations (13) follow from two considerations. The

typical locations of the ai are governed by ρðaÞ. Plugging
these typical values into Eq. (3) yields the 5=2 exponential
term. However, the ai are random and may deviate from
their typical locations. For instance, a1 ≤ −s with proba-
bility ≈ expð− 1

12
s3Þ. Such deviations lead to the cubic

exponential terms. In order to provide matching upper and
lower tail bounds, we precisely control the LDP for the
counting function of the Airy PP in large intervals. This can
be done via asymptotics of the Ablowitz-Segur solution to
Painlevé II [48,49], which relates to the exponential
moment generating function for this counting process, as
well as by using of the relation of the AAP to the stochastic
Airy operator [50]. The main ideas and steps of this
derivation are provided in Ref. [46] (and further technical
details and complete rigorous proofs are in Ref. [51]).
Extensions and summary.—The approach developed in

this Letter is applicable to certain variants of the KPZ
equation which enjoy identities similar to Eq. (3)—namely,
half-space KPZ [52], the stochastic six vertex model and
ASEP [42,53]. Briefly we consider the half-space KPZ
equation, i.e., Eq. (1) restricted to x ∈ Rþ, with Neumann
b.c. ∂xhðt; xÞjx¼0 ¼ A, for the value A ¼ −1=2 correspond-
ing to the so-called critical case. In that case and for droplet
initial condition Ref. [52] proved that

exp

�
−
1

4
eHðtÞþst1=3

�
¼ EGOE

�Yþ∞

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ et

1=3ðaiþsÞ
p

�
;

where the r.h.s. expectation is over the β ¼ 1 version of the
Airy PP (which describes the top few eigenvalues at the
spectral edge for the GOE instead of GUE—see also
Ref. [46]). Employing the Airy PP Coulomb-gas approach
from this Letter, we find that due to the square root in the
right-hand side above (which introduces a factor of 1=2 in
exponential form), and the value of β ¼ 1 (instead of
β ¼ 2), the half-space KPZ rate function Φhalf−space

− ðzÞ ¼
1
2
Φ−ðzÞ, where Φ−ðzÞ is the full-space function in Eq. (2).
In conclusion, by relating the distribution of the height

for the KPZ equation to an expectation over the Airy point
process, we are able to employ the Coulomb-gas formalism
and associated electrostatic problem large deviation prin-
ciple (first for the GUE and, through a limit transition
which we present, for the Airy point process) to identify the
KPZ rate function. Solving the variational problem pro-
duces the formula in Eq. (2). This argument brings the role
of random matrix theory in the study of KPZ to the

forefront and provides a straightforward and assumption-
free derivation of the KPZ rate function. Additionally, a
similar approach should be applicable to other exactly
solvable KPZ class models such as ASEP or the stochastic
six vertex model which connect to discrete Coulomb gases.
This approach also permits us to derive results valid for all
intermediate times and opens the way to systematically
calculate higher order corrections between the long time
and finite time PDF, as is useful in experiments and
numerics.
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