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We study a system composed of like-charged cylinders and dumbbell-like counterions, with the focus
laid on the role of the internal structure of counterions, using Monte Carlo simulations. The dumbbell
ions are found to exhibit novel counterion condensation behavior governed by their length. Effective
electrostatic interactions mediated between charged parallel cylinders also turn out significantly different
from the case of pointlike ions, as a result of the complex interplay between the spatially separated charge
distribution in the dumbbell counterions, their orientation, and the curvature of the charged cylinder. We
show that at a weak-to-moderate electrostatic coupling strength, where effective like-charge interactions are
usually found to be repulsive, the intercylinder interaction can become attractive and display a distinctive
sensitivity to the cylinder curvature and dumbbell size, proving the significant effect of ion structure.
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Rigid charged biopolymers such as DNA, microtubules,
and actins are involved in various biological functions
and are usually modeled by charged cylinders. One of the
most striking features of these systems in the presence of
multivalent counterions is the like-charge attraction [1–6],
which contradicts the prediction of the mean-field Poisson-
Boltzmann (PB) theory. In recent years, the PB theory
has been improved to include, e.g., ionic correlations and
fluctuations [7–10], a finite volume of ions [11,12], and
even a nonuniform dielectric constant of the solvent
medium [13,14]. Most studies have assumed counterions
as pointlike particles without internal structures.
Some multivalent ions, however, have extended rodlike

structure with well-separated charge distributions along
the backbone. Typical examples are stiff polyamines such
as spermine and spermidine [15,16]. For these ions, the
validity of the point-particle assumption becomes ques-
tionable, and, moreover, they are effective condensation
agents to induce bundle formations or collapses of various
charged biopolymers [15–19]. Recently, there have been
several theoretical attempts to take into account the internal
structure of counterions [20–27]. They found that two like-
charged planar surfaces attract each other in the presence
of rodlike counterions, perhaps surprisingly, even in the
mean-field regime where pointlike counterions lead only
to repulsion [21–23] (for recent reviews, see, e.g.,
Refs. [25,26], and references therein).
Then a question arises: Does the attraction between

two like-charged planar surfaces mediated by the rodlike
counterions persist even for cylindrical surfaces?
Notwithstanding the fact that, on most relevant length
scales, charged biopolymers can be regarded as cylinders
[28–31], this critical question has not been addressed, and

the answer is not straightforward, because the two geom-
etries are fundamentally different in several aspects.
Furthermore, the electrostatic interactions are governed by
counterions around charged surfaces, and the two geometries
have distinct counterion condensation behaviors even for
pointlike ions. In the case of a cylinder, as electrostatic
potential competes with confinement entropy, a character-
istic condensation transition, referred to as the Manning
transition, occurs at a critical temperature [32–39]; i.e., not
all pointlike counterions are bound to the cylindrical surface.
In contrast, for a charged plane, electrostatic energy domi-
nates entropy to condense all pointlike counterions to the
surface. How the counterion condensation is altered for
structured ions is also an interesting question by itself. In a
nutshell, taking the rodlike structure of counterions into
consideration, the condensation behavior of counterions and
the effective interactions mediated by them in cylindrical
geometry come as unanswered questions.
In this Letter, via Monte Carlo (MC) simulations, we

address these problems and present a systematic study on
charged cylinders in the presence of rodlike counterions,
modeled as dumbbells.We find that the dumbbell structure of
counterions leads to a characteristic condensation behavior
that depends on the dumbbell size. Moreover, the dumbbell
size and cylinder curvature drastically affect the intercylinder
interaction at a weak-to-moderate coupling strength. We
provide direct evidence that ionic structure and charged
surface curvature interplay in a complex way resulting in
unique equilibrium phases that cannot be extrapolated from
the case of pointlike ions or planar geometry.
System.—We first study the counterion condensation by

considering a system composed of a charged cylinder and
N dumbbell-like counterions [Fig. 1(a)]. The cylinder of
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radius R is at the origin and has a uniform surface charge
distribution: σðrÞ ¼ σsδðr − RÞ. A dumbbell ion consists
of two q-valent pointlike charges connected by a thin rod of
length d, and the number density of ions is ρðrÞ ¼P

N
j¼1 ½δðr − rjÞ þ δðr − rj − djÞ�, where dj ¼ dn̂j with

n̂j being a unit vector along the jth dumbbell orientation.
The canonical partition function is given as

ZN ¼ 1

N!

YN
j¼1

Z
drjdn̂jΩðrj; rj þ djÞ exp ½−βðH − ΣsÞ�;

where the Hamiltonian in units of kBT ¼ β−1 reads as
βH ¼ ðlB=2Þ

R
drdr0QðrÞvðr; r0ÞQðr0Þ with vðr; r0Þ ¼

1=jr − r0j and QðrÞ ¼ qρðrÞ − σðrÞ, and Σs indicates all
the self-energy terms of vðr; rÞ. Here, lB ≡ e2=ð4πεε0kBTÞ
is the Bjerrum length in a medium of dielectric constant ε.
The factor Ωðr; r0Þ takes account of the excluded-volume
effect of a dumbbell ion with a cylinder; it is zero if a
dumbbell overlaps with the cylinder and unity otherwise.
We assume the dumbbells as lines with no thickness and
thus ignore steric interaction between them. We introduce
the electrostatic coupling parameter measuring the strength
of ionic correlations as Ξ ¼ 2πq3l2

Bσs [7–9], and the
Manning parameter indicating the strength of counterion-
cylinder attraction as ξ ¼ qlBτ with line charge density
τ ¼ 2πRσs. We rescale all lengths by the Gouy-Chapman
length μ ¼ 1=ð2πqlBσsÞ as r̃ ¼ r=μ, but, for simplicity of
notation, the tilde on rescaled lengths shall be dropped
hereafter.

To minimize finite-size effects in simulations, we impose
periodic boundary conditions along the cylinder axis (the
z axis), and the Coulomb interactions between periodic
images of the central box of height H are counted through
the rapidly converging Lekner-Sperb resummation
[9,35,36]. We assume that the system is confined inside
an outer cylindrical boundary of radius L, or Δ ¼ lnðL=RÞ
in the logarithmic scale. For an efficient sampling of the
phase space, not only centrifugal sampling by transforming
the radial coordinate to the logarithmic scale [35,36]
but also a direct exchange move between condensed and
decondensed counterions are used [37–39].
Counterion condensation.—In Fig. 1(b), we present

simulation results for the cumulative counterion density,
nðrÞ ¼ ð1=ξÞ R r

R dr
0r0hρðr0Þi=ð2πlBσ

2
sÞ with ρðrÞ being the

radial distribution of counterions, where the bracket h� � �i
denotes the thermal average with Boltzmann weight. The
results are presented as a function of the logarithmic radial
distance, y ¼ lnðr=RÞ, for dumbbell ions of different sizes
at the weak-coupling (WC) regime. For comparison, we
provide the PB predictions for pointlike counterions at a
given Δ. The solid line is for N pointlike counterions with
valency 2q, and the dotted line is for 2N pointlike counter-
ions with valency q, satisfying the charge neutrality in
either case. In Fig. 1(b), nðrÞ of dumbbell ions is observed
to follow either the 2q behavior (solid line) or the q
behavior (dotted line) according to the radial distance r and
dumbbell size d. At a distance r, much larger than the
dumbbell size (r ≫ d), the data points obey the 2q
behavior, but at shorter distances (r ≪ d), they agree well
with the q behavior. The relatively sharp crossover between
the two behaviors occurs around the dumbbell size r ∼ d;
see, e.g., for α≡ ðln dÞ=Δ ¼ 0.7, the crossover occurs
at lnðr=RÞ ≈ 14.
The counterion condensation is characterized by a

fraction of counterions that remain within a finite distance
from the cylinder. For pointlike ions, the condensed
fraction f is defined by using the inflection-point criterion
[41,42]. In the case of dumbbell ions, there exists an
ambiguity in adopting the inflection-point criterion [43],
but we compute the condensed fraction f as nðy�Þ with
y� ¼ lnðr�=RÞ ¼ Δ=2, which reasonably quantifies the
condensed fraction in consistency with the behaviors of
the heat capacity. In Fig. 1(c), we present f as a function of
the Manning parameter ξ. For large dumbbell ions with
α > 1=2, the condensed fraction f is well described by the
q-valent pointlike behavior (dotted line), leading to the
condensation transition at ξ ≈ 1. In contrast, small dumb-
bell ions with α < 1=2 start to condense at ξ ≈ 1=2,
and f complies with the 2q-valent behavior (solid line).
Such two distinguishing features of dumbbell ions
according to their lengths are also evidenced in the
dimensionless heat capacity per particle [35,36], C̃ ¼
hðβH − hβHiÞ2i=ðNΔÞ, presented in Fig. 1(d). We also
examined the strong-coupling (SC) regime and found the

(a)

(c) (d)

(b)

FIG. 1. (a) Snapshot of a charged cylinder (blue) and dumbbell-
like counterions where two q-valent pointlike charges (red)
are connected by a thin rod (gray) [Ξ ¼ 0.1, ξ ¼ 1, d ¼ 4].
(b) Cumulative density profiles, (c) condensed counterion frac-
tion, and (d) heat capacity in the weak-coupling regime (Ξ ¼ 0.1)
for Δ ¼ 20, where various dumbbell sizes are examined, such as
α≡ ðln dÞ=Δ ¼ 0.1 (squares), 0.3 (circles), 0.7 (triangles), and
0.9 (diamonds) [40]. Solid (dotted) lines represent the PB
predictions for 2q ðqÞ-valent pointlike charges.
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same behavior; i.e., two different condensation points are
observed at ξ ¼ 1=2 or 1, depending on d [44]. The critical
behavior of condensation emergent only in the limit
of Δ → ∞ (for pointlike ions, see Refs. [35–38]) is not
our concern.
Intercylinder interactions.—We now turn to the inter-

action of two like-charged cylinders mediated by dumbbell-
like counterions. We consider two identical cylinders of
radius R and surface charge density σs, parallelly aligned
along the z axis with an axial separation of D. We calculate
the intercylinder forces by employing two independent
methods, i.e., using the free energy estimated through
the Jarzynski equality [45,46] and the direct force evalu-
ation within MC simulations as detailed in Ref. [31]. In the
first method, two cylinders thermalized at a fixed initial
distance are pulled apart to a certain distance D along a
specified protocol. Repeating the protocol, we measure the
work w expended at each pulling to give the free energy
difference between the initial and final distances as
he−βwiw ¼ e−βF ðDÞ, where h� � �iw denotes the average with
respect to the work distribution [45,46].
In Figs. 2(a) and 2(b), we show the rescaled forces per

unit length, F̃ ¼ 2πβΞðF=HÞ, for various d and ξ as a
function of D at the WC limit (Ξ ¼ 0.1); F ¼ −∂F=∂D
withF obtained via the Jarzynski equality (lines) and direct
force evaluation (symbols). According to the PB theory for
pointlike ions, two like-charged objects always repel. In the
case of dumbbell ions, our results show otherwise. Even at
weak coupling, for d (or ξ) greater than a certain value,

cylinders attract each other (indicated by negative F̃)
around a region of D − 2R ∼ d; see the results for d ¼
10 in Fig. 2(a) and for ξ ¼ 3, 10 in Fig. 2(b). For Ξ ≪ 1,
through the saddle-point approximation of the grand-
canonical partition function [23], we can derive the
extended PB equation for dumbbell ions as ∇2ϕðrÞ ¼
−4Λ

R
dn̂Ω2ðr; rþ dÞe−βϕðrÞ−βϕðrþdÞ, where ϕ is the

electrostatic potential, Λ is rescaled fugacity, and Ω2

represents the steric constraint of dumbbells with the
two cylinders. For a quantitative understanding, one has
to solve the PB equation, a highly nonlinear integrodiffer-
ential equation, under complicated geometrical constraints
specified by Ω2, which is a formidable task. Yet, looking at
the orientational configuration of dumbbell ions, we can
intuitively understand these attractions. Figure 2(c) presents
the averaged orientational order parameter along the x axis,
χ ¼ hðsin θ cosφÞ2i, with θ (φ) being the polar (azimuth)
angle between the dumbbell orientation and the z (x) axis,
and χ ¼ 1=3 for random orientations. On the exterior side,
the dumbbell ions close to cylinders tend to be parallelly
aligned along the cylinder axis (as denoted by small χ),
while in the intervening region between the two cylinders, a
finite portion of dumbbell ions tend to be perpendicularly
oriented, leading to larger χ.
These perpendicularly oriented dumbbell ions are essen-

tial to induce the intercylinder attraction by means of two
distinct effects: (i) energetic bridging and (ii) reducing
osmotic pressure in the intervening region. Effect (i) results
from a tendency for two end point charges in a perpen-
dicularly aligned dumbbell to sit simultaneously near the
charged surfaces where the potential energy minima are
located. This mechanism also exists for the attraction
between planar surfaces, as detailed in Refs. [21–23].
What is unique for curved surfaces is effect (ii): When
perpendicularly aligned, we have less collision between a
cylinder and a rod connecting two end points in a dumbbell
[gray rod in Fig. 1(a)]. In consequence, the osmotic
pressure in between the cylinders is reduced, pushing
the two cylinders toward each other. In Fig. 2(d), we show
the osmotic pressure profiles due to end points (Pend)
and rods (Prod) of dumbbells along the cylinder surface,
where the angle φ is defined as in Fig. 2(c). The pressure
is given by the normal component of the osmotic force
per unit height on the infinitesimal line segment Rdφ as
dFosm

n ðφÞ=H ¼ −PðφÞRdφ. Contrary to the planar surface,
the pressure profiles are inhomogeneous along the cylinder
surface. Prod is reduced in the intervening space (around
φ ¼ π), which dominates over the enhancement of Pend and
results in the net attraction. This demonstrates the signifi-
cant contributions of the rod-cylinder collisions due to the
finite cylinder curvature.
Now we consider the interactions at the SC regime. As

exemplified in Figs. 3(a) and 3(b) showing the rescaled
force F̃ at Ξ ¼ 104, we find the attraction occurs only for
ξ > 1=3 (see data for ξ ¼ 0.5, 0.8 in comparison with

(b)

(d)

(a)

(c)

 = 3

10

5

-5

-10

FIG. 2. Rescaled forces F̃ at the WC regime (Ξ ¼ 0.1) versus
D −Dmin with Dmin ¼ 2R for various (a) d and (b) ξ. Two
independent methods are employed: Jarzynski equality (solid
lines) and direct force evaluation (symbols). D −Dmin ¼ d is
indicated as an arrow. (c) Contour plot of the orientational order
parameter of dumbbells when D −Dmin ¼ dþ 1 ¼ 11 and
ξ ¼ 10. (d) Osmotic pressure profiles, along the cylinder surface
due to rods and end points of the dumbbells, relative to a
reference value: δP̃ðφÞ≡ P̃ðφÞ − P̃ð0Þ, where P̃ ¼ 2πβΞξP. The
same parameters as in (c) are used.
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ξ ¼ 0.2). The interaxial distance at which the force van-
ishes corresponds to the equilibrium distance Deq that
differs depending on ξ: For 1=3 < ξ < 2=3, Deq ∼ dþ 2R,
and for ξ > 2=3, Deq ∼ 2R, indicating that two cylinders
are almost in contact to form a compact bound state. In
order to understand these results quantitatively, we extend
the SC theory for pointlike ions to the case of dumbbell
ions as below.
For Ξ ≫ 1, through the virial expansion of the grand-

canonical partition function and the Legendre transforma-
tion, the canonical SC free energy F SC is written as [29,30]

βF SC ¼ U0 − N ln I; ð1Þ

where U0 ¼ −2Nξ lnD is the electrostatic repulsion
between bare cylinders and the single-particle partition
function is I ¼ R

d2r
R
dn̂Ω2ðr; r0Þ

Q
2
i¼1 e

−uðriÞ−uðr0iÞ with
uðrÞ ¼ 2ξ ln r. The radial distances of two end points of a
dumbbell from the ith cylinder are denoted by ri and r0i,
respectively. A numerical evaluation of F SC shows perfect
agreement with simulation results; compare the force
evaluated using Eq. (1) (lines) and simulation data (sym-
bols) in Figs. 3(a) and 3(b). Furthermore, theD dependence
of F SC can be found by the asymptotic analysis of scaling
behaviors of I [29,30,44]: When ξ < 1=2, the asymptotic
expressions of the SC free energy per particle read as (apart
from a D-independent constant)

βF SC

N
∼
�−2ξ lnD for D ≪ d;

−2ð1 − 3ξÞ lnD for D ≫ d:
ð2Þ

If ξ > 1=3, a minimum is developed in the free energy
aroundD ∼ d. Otherwise, the free energy is a monotonically

decreasing function of D, and the force always becomes
repulsive [Fig. 3(c)]. On the other hand, when ξ > 1=2, we
obtain

βF SC

N
∼
�−2ð2 − 3ξÞ lnD for D ≪ d;

2ξ lnD for D ≫ d:
ð3Þ

If ξ > 2=3, the free energy monotonically increases with
D, leading to close contact of cylinders. In Fig. 3(c), we
compare these asymptotic expressions with the full numeri-
cal evaluations of Eq. (1). Both are in excellent agreement
with each other, and their dependence on ξ and D explains
well the behaviors presented in Figs. 3(a) and 3(b). We also
note that, for D ≪ d, F SC follows the expression of point-
like ions in Refs. [29,30], while, forD ≫ d,F SC agrees with
the pointlike result with replacing q with 2q. At the SC
regime, dumbbells in the intervening space show a short-
ranged liquidlike positional order along the cylinder
axis, and orientationally they are aligned along the x axis
at Deq ∼ dþ 2R while along the z axis at Deq ∼ 2R.
Phase diagram.—So far, we have considered the limiting

values of the coupling strength, i.e., Ξ → 0 (WC) or
Ξ → ∞ (SC), but, for most of the practical applications,
the regime of an intermediate Ξ has no less importance. In
Fig. 4, we present the phase diagram, indicating the
repulsion and attraction regions in the parameter space
for various Ξ; i.e., on the right sides of phase boundaries
denoted by lines, the attraction occurs at corresponding Ξ.
The parameter space is spanned by the Manning parameter
(or, equivalently, rescaled cylinder radius R ¼ ξ) and the
rescaled dumbbell size. At Ξ ¼ 104, the phase boundary
agrees with the SC theory prediction; cylinders attract each
other, irrespective of d, only if ξ > 1=3. At Ξ ¼ 0.01, on
the other hand, the attraction occurs when d > d�, the
critical dumbbell size d� is a function of the Manning
parameter, and, at ξ → ∞ (corresponding to the planar
limit), we find d� ≈ 4, consistent with the results for

(b)(a)

(c)

 = 3
d = 1
d = 5
d = 10

d = 10

FIG. 3. Rescaled forces F̃ at the SC regime (Ξ ¼ 104) versus
D −Dmin for various (a) ξ and (b) d. Symbols are MC simulation
results, and lines are calculated from the SC free energy [Eq. (1)]
showing perfect agreement. (c) Comparison of the asymptotic
expressions (dashed lines) Eqs. (2) and (3), with a numerical
evaluation of Eq. (1) (solid lines). From left to right, ξ ¼ 0.3, 0.6,
0.8 at d ¼ 103 and L ¼ 106.

repul-
sion

attraction

FIG. 4. Phase diagram of intercylinder interactions for various
Ξ, obtained from MC simulations. Attraction occurs at ξ and d
lying on the right side of the line given for a specified Ξ. The lines
for Ξ ¼ 10−2 and Ξ ¼ 104 are converged results to the WC limit
(Ξ → 0) and the SC limit (Ξ → ∞), respectively.
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charged plates [23]. At a weak-to-moderate coupling
strength, the phase boundaries show a very sensitive
dependence on the dumbbell size as well as the cylinder
curvature (compare the phase boundaries for Ξ ¼ 1, 2, and
10). Considering spermidines as rodlike ions, biopolymers
such as actin, microtubules, and the M13 virus have
parameter values in the range of Ξ ¼ 2–20, ξ ¼ 5–30,
and d ¼ 2–6, which roughly corresponds to the region
showing the sensitive dependence on d and ξ [47]. Our
result suggests that the rodlike structures of counterions
could be critical to understanding the correct phase behav-
iors of rigid polyelectrolytes in the presence of polyamine
ions, especially at a low coupling strength relevant to
physiological conditions.
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