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While nearly all theoretical and computational studies of entangled polymer melts have focused on
uniform samples, polymer synthesis routes always result in some dispersity, albeit narrow, of distribution of
molecular weights (ĐM ¼ Mw=Mn ∼ 1.02–1.04). Here, the effects of dispersity on chain mobility are
studied for entangled, disperse melts using a coarse-grained model for polyethylene. Polymer melts with
chain lengths set to follow a Schulz-Zimm distribution for the same average Mw ¼ 36 kg=mol with ĐM ¼
1.0 to 1.16, were studied for times of 600–800 μs using molecular dynamics simulations. This time frame is
longer than the time required to reach the diffusive regime. We find that dispersity in this range does not
affect the entanglement time or tube diameter. However, while there is negligible difference in the average
mobility of chains for the uniform distribution ĐM ¼ 1.0 and ĐM ¼ 1.02, the shortest chains move
significantly faster than the longest ones offering a constraint release pathway for the melts for larger ĐM.
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The dynamics of macromolecules drive the unique
viscoelastic properties that underline their strength and
flexibility. Polymer chains consist of a large number of
atoms that often exceeds 106, constituting entropic objects
whose properties scale with their molecular weight.
Variations in molecular weights, or the dispersity, have
an immense effect on their phase behavior and dynamics
and, consequently, affect numerous technologies, particu-
larly those that incorporate entangled polymers with con-
trolled elasticity.
The variability in molecular weights stems from inherent

polymerization synthesis routes that yield dispersity in
polymer chain length. This dispersity is a result of the
statistical process that determines the polymerization path
which is manifested in the differences of the number
average molecular weight Mn and the weight average
molecular weight Mw [1]. The degree of dispersity ĐM
is defined as the ratio of Mw=Mn [2]. Among the lowest
dispersity polymers are those made by anionic and atom-
transfer radical polymerization [3,4], which exhibit rela-
tively narrow distributions ĐM ∼ 1.02–1.04. The dispersity
of these polymers is well captured by the Schulz-Zimm
distribution [1,5,6]. Seemingly a small number, this vari-
ability in chain lengths reflects a wide distribution of
molecular weights where the ratio of the shortest to the
longest chain length for the Schulz-Zimm distribution is
three, even for ĐM ¼ 1.02. This corresponds to a difference
in relaxation times of 27 assuming a standard reptation
exponent of 3.0, larger if one uses the experimentally
observed value of 3.4. The effect of systematically varying
ĐM on the dynamics of entangled melts is not easily

accessible experimentally and remains an open question
theoretically notwithstanding immense effort [7–18]. Most
of these studies have focused on blending mixtures of two
chain lengths. Here, with the power of new computational
tools, we address the effects of narrow distributions of Mw
within the framework anionic and atom-transfer radical
polymerization on chain mobility in entangled melts. This
fundamental aspect of polymer physics has not been
thoroughly explored, and the understanding of the con-
straint release pathways in which dispersity affects polymer
response remains an open question. Consistent with earlier
dynamic theories and simulations [1,18,19], our molecular
dynamics (MD) simulations show that the presence of
highly mobile short chains leads to constraint release for
longer chains.
The significance of polymeric mechanical response has

resulted in thorough efforts to resolve the effects of the
dispersity of molecular weights on the flow of entangled
melts. The flow characteristics are often captured in terms
of the dependence of the viscosity on shear rate and linear
viscoelastic response which are sensitive to chain disper-
sity. The effects become particularity significant for high
molecular weights [20,21]. Dispersed melts have been
treated theoretically by extending models of melts with
uniform chain length [1,22]. These models focused on
linear viscoelasticity of entangled polymer melts [8–15,17].
These theories clearly demonstrate that the dynamics of

linear chains in dispersed polymeric melts cannot be
described by the classical reptation theory. Only models
which explicitly consider the effects of the disperse
surroundings of a chain through tube renewal can describe
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the dispersity effects on observed rheological response.
While essentially all previous theoretical work on dispersed
polymer melts have focused on linear viscoelastic response,
few have discussed the effect of polymer dispersity on
chain mobility that underlines the viscoelastic response
[11]. Molecular dynamic simulations allow us to study
dispersed entangled polymer melts, bridging the gap
between average behavior captured by viscoelastic theories
and chain mobility.
Numerical simulations are optimally positioned to study

chain mobility in disperse melts. Previous numerical
studies of disperse polymers melts have largely focused
on binary blends [23–29]. However, due to computational
limitations, only the longer of the two chain lengths was
well above the entanglement molecular weight Me. There
have been few studies of polymer melts with a distribution
of chains lengths, though mostly for short, unentangled
polymers [19,23,30–37]. Rorrer et al. [19,34–36] mapped a
distribution of chain lengths on a small number of chain
lengths and showed that for the same weight-averaged
molecular weight, increasing the dispersity in chain lengths
gives a lower Rouse time and introduces a broadening of
the transition to reptation of the chains. Li et al. [37] have
shown that even very large dispersity has little effect on the
polymer glass transition.
With the significance of understanding the dispersity of

polymers on chain mobility in entangles melts, this study
has used polyethylene (PE), a well-studied macromolecule,
as a model system. Computationally, coarse-grained (CG)
models with 3–48 methylene groups per CG pseudoatom
[38–44] have been developed, providing an essential tool to
probe a sufficiently large melt that will allow the distinction
of dispersity effects. Using a CG model for PE with four
methylene groups per CG bead [43–45], we examine chain
mobility of disperse entangled polymer melts with disper-
sity ĐM in the range of the best synthetic routes and
compare the results to a uniform polymer melt. This CG
model was chosen since for more than five methylene
groups per CG bead, one has to include extra beads or other
constraints to avoid chains cutting through each other
[38,39,43,44]. The CG PE model used here has previously
derived from fully atomistic simulations [43,44]. The
nonbonded and bonded potentials were determined using
an iterative Boltzmann inversion method. Additional details
of the methodology can be found in Salerno et al. [43,44].
Melts with an average molecular weight Mw ∼ 36 kg=mol
(∼640 CG beads) for dispersity ĐM ¼ 1.0, 1.02, 1.04, 1.08,
and 1.16 were studied. Using this CG models, we could
reach times of order 800 μs. In comparison with earlier
simulations of broader dispersity, we focus exclusively on
low dispersity to understand its effects on chain mobility.
To model narrow molecular weight distributions in

polymer melts synthesized by anionic and atom-transfer
radical polymerization, the chain lengths were chosen to
follow a Schulz-Zimm distribution [1,5,6],

PðMÞ ¼ zzþ1

Γðzþ 1Þ
Mz−1

Mz
n
exp

�
−zM
Mn

�
; ð1Þ

where ĐM ¼ Mw=Mn ¼ ðzþ 1Þ=z [6]. This distribution
captures well the experimental observed molecular
weight dispersity as resolved by chromatography [1]. All
systems had the same weight-average molecular weight
Mw ¼ 35.8� 0.2 kg=mol. Experimentally the entangle-
ment molecular weight Me ∼ 1.1–1.2 kg=mol [46,47] or
about 20 CG beads for PE. Here, we use Nc ¼ 2000 chains
for 1.02 ≤ ĐM ≤ 1.08 and 4000 chains for ĐM ¼ 1.16 to
represent the Schulz-Zimm distribution, as shown in Fig. 1.
For ĐM ¼ 1.0, Nc ¼ 800. For the largest dispersity
ĐM ¼ 1.16, the shortest chain (M=Me ∼ 10) is well
entangled. Within these distributions, there are 398, 524,
671, and 940 unique chain lengths for ĐM ¼ 1.02, 1.04,
1.08, and 1.16 respectively. Details of the systems studied
here are listed in Table I.
The simulations were performed using the large atomic

molecular massive parallel simulator (LAMMPS) molecular
dynamics code [48]. The melts were constructed following
the procedure outlined in Auhl et al. [49] with periodic
boundary conditions in all three directions. The simulation
was performed at constant volume with the velocity-Verlet
integrator and a Langevin thermostat with a damping
constant of 100 ps to maintain the temperature at 500 K
and a time step of 20 fs. Coarse graining reduces the
number of degrees of freedom in a system, creating a
smoother free-energy landscape compared with fully atom-
istic simulations. This results in faster dynamics for the CG
polymer chain than for the fully atomistic model [50–53].
For the model used here with four methylene groups per
CG bead, the dynamic scaling factor α ¼ 6.2 [43–45] at
500 K and at an experimentally relevant density, ρ ¼
0.76 g=cm3 [54]. For all the results presented here,
time is scaled by α, and all five systems were run for
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FIG. 1. Distribution PðMÞ versus molecular weight M for
ĐM ¼ 1.04 (red) for 2000 chains and 1.16 (blue) for 4000 chains
compared to the analytic Schulz-Zimm formula [Eq. (1)].
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5.0–6.6 × 109 time steps. These run times are equivalent to
600–800 μs and are listed in Table I for each system.
The mean-squared displacements (MSD) of the center of

mass (cm) g3ðtÞ ¼ h½rcmðtÞ − rcmð0Þ�2i and the center four
CG beads of the chain g1ðtÞ ¼ h½riðtÞ − rið0Þ�2i are shown
in Fig. 2(a) for four values of ĐM. The data shown in
Fig. 2(a) are averaged over all chains in the system. The two
quantities allow the distinction of local motions at short
times and macroscopic motion at long times. For long
times, the average chain mobility increases and the terminal
time τd, when the MSDs become diffusive, decreases asĐM
increases from 1.0 to 1.16. As seen from the results for the
weight averaged diffusion constantD ¼ g3ðtÞ=6t for t > τd
listed in Table I, D increases by 50% over the range of ĐM

studied. Results for a uniform melt (ĐM ¼ 1.0) and the
lowest dispersity ĐM ¼ 1.02 are nearly indistinguishable.
As seen from g1ðtÞ, the motion of the inner monomers at
early times does not depend on ĐM, as all the chains, even
for ĐM ¼ 1.16, are much longer than the entanglement
length. From g1ðtÞ, we find that the crossover from the early
Rouse relaxation t1=2 regime to the t1=4 reptation regime at
which topological constraints set in, is at t�e ∼ 14 ns.
Assuming that the distribution of segment displacement
along the tube is Gaussian on the scale of the tube diameter
dT [55], one can determine the entanglement time τe from
t�e ¼ ðπ=9Þτe. This gives τe ∼ 40 ns. The MSD of the
center monomers at the crossover [55] g�1e ¼ ð2=3πÞd2T
gives a tube diameter dT ∼ 4.8 nm. Fits to the tube model of
the dynamic structure function Sðq; tÞ from neutron spin-
echo experiments by Richter et al. [56] and Schleger et al.
[57] for PE of the same Mw at 509 K give τe ∼ 5 ns
and dT ∼ 4.35 nm.
The effect of the dispersity is captured through mea-

surements of the mobility of the shortest and longest chains
in each melt. Figure 2(b) presents results for the MSD of the
shortest and longest 5% of the chains compared to the
average MSD for all chains for ĐM ¼ 1.04. While there is
little difference in the motion of the center beads of the
chain at early times, at later times the mobility of the beads
for the shortest 5% of the chains deviate more from the
mean than do the longest 5% of the chains. For ĐM ¼ 1.04,
for the shortest 5% of the chainsMw ¼ 22.0 kg=mol, while
Mw ¼ 50.3 kg=mol for the longest 5%, compared to the
number average molecular weight of the system
Mw ¼ 35.6 kg=mol. Diffusion constants directly extracted
from the simulations are presented in Fig. 3, averaged
over all chains D, the shortest 5% DS and longest 5% DL.
These results show that the shorter chains move signifi-
cantly faster than the average and as the dispersity
increases, DS deviates considerably more from D than
does DL. For comparison, for ĐM ¼ 1.04, Dð22.0Þ ¼
3.4 × 10−13 m2=s for a uniform melt of chains with Mw ¼
22.0 kg=mol is 6% larger than DS ¼ 3.2 × 10−13 m2=s,
whereas Dð50.3Þ ¼ 5.5 × 10−14 m2=s for a uniform melt
of chains with 50.3 kg=mol is 13% smaller than
DL ¼ 6.3 × 10−14 m2=s. These results for DðMÞ are
obtained from simulations for uniform systems presented
in the inset of Fig. 3 [58]. The ratio of D for a uniform melt

TABLE I. Dispersity ĐM, number of chains Nc, number of CG beads Nt, average molecular weight Mw, number average molecular
weight Mn, calculated Đc

m ¼ Mw=Mn, the length of the run Tr (scaled time), measured weight averaged diffusion constant D, and
weight averaged diffusion constant D̄ from Eq. (2).

ĐM Nc Nt Mw (kg=mol) Mn (kg=mol) Đc
m Tr (μs) D × 1013 (m2=s) D̄ × 1013 (m2=s)

1.0 800 512 000 35.8 35.8 1.0 790 1.15 1.15
1.02 2000 1 251 799 35.8 35.2 1.019 830 1.16 1.22
1.04 2000 1 237 358 35.6 34.4 1.036 800 1.23 1.29
1.08 2000 1 176 236 35.8 32.9 1.087 680 1.39 1.53
1.16 4000 2 203 172 36.0 30.8 1.169 600 1.77 2.04

FIG. 2. Mean squared displacement of the center of mass g3ðtÞ
(open) and center four CG beads g1ðtÞ (solid) for (a) four values
of the molar mass dispersity (ĐM) and (b) forĐM ¼ 1.04, number
averaged over all chains (green triangles), the shortest 5% of the
chains (blue squares), and longest 5% of the chains (red circles).
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of the same Mw as the shortest chains and DS increases
as Đ increases whereas the ratio between D for a uniform
melt of long chains and DL does not. For ĐM ¼ 1.16,
Dð11.0Þ=Ds ¼ 1.2, while Dð62.8Þ=DL ¼ 0.9, where
Mw ¼ 11.0 kg=mol is molecular weight of the shortest
5% of the chains and Mw ¼ 62.8 kg=mol is the molecular
weight for the longest 5% of the chains for ĐM ¼ 1.16. We
also measured the static structure factor SðqÞ for the entire
melt and for the shortest and longest 5% of the chains.
These measurements show no evidence of phase separation
of the chains for all Đ studied. The divergence of the
motion of the shortest and longest chains suggest that the
short chain enables a constraint release mechanism for
the dynamics [1,22], which is the disentanglement of a
chain due to other polymers reptating away.
The diffusion constant of the disperse melts is estimated

from the diffusion constant DðMÞ of uniform melts by
incorporating the distribution PðMÞ of the chains using

D̄ ¼
R
DðMÞPðMÞMdMR

PðMÞMdM
: ð2Þ

From a series of simulations of uniform polymer melts for
1.6 kg=mol ≤ M ≤ 35.8 kg=mol, shown in the inset of
Fig. 3, we find that for large M, DðMÞ is well described
by a power law DðMÞ ¼ D1ðM=M1Þ−2.18, where D1 ¼
2.81 × 10−10 m2=s andM1 ¼ 1 kg=mol [58]. The decay of
DðMÞwith a power law exponent greater than 2 for largeM
is consistent with experimental results [59]. Using this
power law for DðMÞ and the Schulz-Zimm distribution

[Eq. (1)] for PðMÞ, we estimate D̄ using Eq. (2). As seen
from the inset in Fig. 3 and Table I, D̄ > D for all ĐM. For
small M, D̄ gives a very good estimate of the measured
diffusion constant D as the center of the distribution PðMÞ
dominates. However, as M increases, the two begin to
diverge as the local environment that a chain in uniform
melt begins to deviate from that in the dispersed melt.
This study probed directly the mobility of dispersed

entangled polymer melts with distribution as narrow as
experimentally attainable for long entangled polymers.
Overall the average mobility of the chains increases as
the dispersity increases. We observe that though the
average mobility is hardly affected within this dispersity
range, the mobility of the shortest and longest chains
deviates considerably from the average. The increased
diffusion of the shorter chains results in constraint release
for the longer chains, leading to faster motion of the longer
chains in the dispersed melt than in a uniform melt. This
large variation in mobility of chains within entangled melts
offers a means to tune the viscoelasticity of these melts by
manipulating chain mobility through dispersity. One would
expect that the frequency dependence rheological response
of the viscosity will be strongly affected by the fact that the
shortest and longest changes move at significantly faster
and slower rates compare with a uniform system. Studies of
this effect are currently on the way.
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