
 

Statistics and Dynamics of the Center-of-Mass Coordinate in a Quantum Liquid
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Motivated by recent experiments in ultracold gases, we focus on the properties of the center-of-mass
coordinate of an interacting one-dimensional Fermi gas, displaying several distinct phases. While the
variance of the center of mass vanishes in insulating phases such as phase-separated and charge density
wave phases, it remains finite in the metallic phase, which realizes a Luttinger liquid. By combining
numerics with bosonization, we demonstrate that the autocorrelation function of the center-of-mass
coordinate is universal throughout the metallic phase. It exhibits persistent oscillations, and its short time
dynamics reveal important features of the quantum liquid, such as the Luttinger liquid parameter and the
renormalized velocity. The full counting statistics of the center of mass follows a normal distribution
already for small systems. Our results apply to nonintegrable systems as well and are within experimental
reach for, e.g., carbon nanotubes and cold atomic gases.
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Introduction.—Strong correlations in combination with
quantum mechanics in reduced dimensions have already
provided a plethora of fascinating phenomena [1,2], includ-
ing spin-charge separation, charge fractionalization, Wigner
crystals, and non-Fermi liquid behavior. Many of these pop
up in a variety of fermionic and bosonic systems, including
condensed matter, cold atomic systems [3], quantum optics
[4], and even in black holes [5]. Not only compelling, these
systems promise to be relevant for possible application in
topological quantum computation, spintronics, and quantum
information theory.
In classical mechanics, the concept of the center-of-mass

coordinate plays a prominent role. Because ofNewton’s third
law, the action and reaction forces between the particles
compensate each other, and the center of mass is influenced
only by external forces. The very same program can also be
carried out in quantum mechanics, and the center-of-mass
coordinate gets separated from the relative ones [6].
However, this works only when the interaction depends
on the relative position of the particles and not on their
absolute position. In any realistic setting in condensedmatter
or cold atomic systems, an atomic or trapping potential is
inevitably present, involving the absolute position of par-
ticles. Therefore, the center-of-mass contribution cannot be
separated from the rest, and its properties are influenced by
strong correlations. Understanding how this happens is the
main goal of this work, and low-dimensional quantum
systems featuring enhanced correlation effects represent
an ideal playground for that.
The proper definition of themany-body position or center-

of-mass coordinate has a long history [7,8], especially with

periodic boundary conditions. With open boundary condi-
tions (OBCs), however, one can legitimately define the
position operator in the conventional way [9] as

P
ixi

by summing over the position operator of each particle.
Moreover, experimental realizations often imply OBCs.
In this context, a recent experiment on weakly interacting
bosons in one dimension has already investigated the
dynamics of the center of mass [10]. Our aim is to shed
light on the complementary, strongly correlated side of
the problem; thus, we focus on a strongly interacting one-
dimensional quantum liquid in one dimension with OBC
[11]. We find that the center-of-mass coordinate reveals
universal behavior and its variance vanishes in insulating
phases. In the Luttinger liquid (LL) phase, its variancegives a
direct measure of the LL parameter. Its temporal dynamics
follows a universal scaling function and reveals the other
relevant parameter of the low-energy theory, the renormal-
ized velocity. The full counting statistics of the center of
mass obey a normal distribution already for small systems
with 8–10 particles. The observation of all these features is
within experimental reach.
Interacting fermions in 1D: Lattice and continuum.—We

study one-dimensional spinless fermions in a tight-binding
chain with nearest-neighbor interaction at half filling and
OBC [12] using several numerical techniques. This prob-
lem is equivalent to the 1D Heisenberg XXZ chain after a
Jordan-Wigner transformation [1,2]. The Hamiltonian is

H ¼
XN−1

m¼1

�
J
2
ðc†mþ1cm þ c†mcmþ1Þ þ Jznmþ1nm

�
; ð1Þ
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where c’s are fermionic operators, nm ¼ c†mcm, Jz denotes
the nearest-neighbor repulsion and N the number of lattice
sites, and the model hosts N=2 fermions. This model
realizes a Luttinger liquid for jJzj < J, and the strength
of the interaction is characterized by the dimensionless LL
parameter [1] K ¼ π=2½π − arccosðJz=JÞ� and renormal-
ized velocity v ¼ aJπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðJz=JÞ2

p
=2 arccosðJz=JÞ with

a the lattice constant. For Jz > J, the ground state becomes
a charge density wave through a Kosterlitz-Thouless
transition with broken Z2 (corresponding to even and
odd lattice sites) symmetry, while for Jz < −J, the ground
state is phase separated through a first-order phase tran-
sition; i.e., all N=2 fermions are “bound” together. This
model is solved using exact diagonalization (ED) with a
Lanczos algorithm up to N ¼ 26 and by the density matrix
renormalization group (DMRG) up to N ¼ 80.
The low-energy effective field theory of Eq. (1) in the

LL phase is obtained using Abelian bosonization [1–3],
capturing interaction effects nonperturbatively. Using this
procedure, the LL phase of this model with OBCs is
mapped onto [11,13]

H ¼
X
q>0

ωðqÞb†qbq; ð2Þ

where bq accounts for the density fluctuations [1] of the
fermions in Eq. (1) and the long wavelength part of the
local charge density is ρðxÞ ¼ ∂xΘðxÞ=π with

ΘðxÞ ¼ i
X
q>0

ffiffiffiffiffiffiffi
πK
qL

s
sinðqxÞ½bq − b†q� ð3Þ

for the OBC, K the LL parameter, and ωðqÞ ¼ vq with v
the Fermi velocity in the interacting systems and q ¼ lπ=L
with l ¼ 1; 2; 3;…, and L is the system size.
Center of mass.—We define the dimensionless center-

of-mass operator for Eq. (1) as [14]

x̂ ¼ 1

N

XN
m¼1

�
m −

XN
m0¼1

m0

N

�
nm; ð4Þ

where, for simplicity, we have subtracted the equilibrium
position of the center-of-mass coordinate such that hx̂i ¼ 0,
irrespective of how the lattice sites are numbered. For
identical particles (which we consider here), it is indepen-
dent from their mass. This operator is also the normalized
polarization operator [15]. Using bosonization, the very
same quantity reads as

x̂ ¼
Z

L

0

dx
πL

x∂xΘðxÞ; ð5Þ

and we have neglected fast oscillating terms in the
integrand [1–3] from short wavelength density fluctuations,
which are expected to average out after the integral.

While the expectation value of the center-of-mass
operator is zero, its standard deviation σx reads as

σ2x ¼ hx̂2i ¼
Z

L

0

dx
Z

L

0

dy
xyh∂xΘðxÞ∂yΘðyÞi

π2L2

¼
X
q>0

Kq
πL

�Z
L

0

dx cosðqxÞ x
L

�
2

¼ 7ζð3Þ
2π4

K; ð6Þ

where ζðzÞ is the Riemann zeta function [16] and
ζð3Þ ≈ 1.202. The σx is universal in the sense that it
depends only on the LL parameter K but is independent
of the high-energy degrees of freedom: Very different
microscopic Hamiltonians with the same LL parameter
possess identical σx. Since K decreases with increasing Jz,
this implies that, counterintuitively, the variance gets sup-
pressed when moving from the attractive to the repulsive
side. The numerical results from DMRG agree very nicely
with Eq. (6), as seen in Fig. 1. The variance diverges as
σ2x ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J=ðJ þ JzÞ

p
at the first-order critical point. Slight

deviations are visible close to Jz ∼ J, arising from the terms
in the Hamiltonian, driving the Kosterlitz-Thouless tran-
sition, which are missing from Eq. (2). Nevertheless, the
variance seems to remain finite at this critical point.
The above calculation can be extended to the gapped

charge density wave phase, when the effective field theory of
Eq. (1) is the sine-Gordon model [1,2]. In this case, a Mott
gap Δ opens up in the spectrum. Within the realm of the
semiclassical limit of thismodel, followingRefs. [17,18], the
variance of the center of mass is calculated with K replaced
byωðqÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2ðqÞ þ Δ2

p
in Eq. (6) under the sum. This gives

σ2x ∼ v=LΔ and vanishes in the thermodynamic limit, which
is also corroborated by ED. For finite systems, the variance
vanishes when the system size L is much longer than the
correlation length v=Δ. Alternatively, the variance is negli-
gible when the level spacing v=L is much smaller than the
actual gap [19].
In the phase-separated regime, bosonization is not

applicable, but the variance of the center of mass can be
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FIG. 1. The variance (red squares) of the center of mass and the
LL velocity (blue circles) in Ja units from the center-of-mass
autocorrelator are plotted from DMRG with N ¼ 80. The
analytical results from Eqs. (6) and (8) using the Bethe ansatz
results for K and v without any fitting parameter are shown by
black lines.
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calculated. Since all N=2 particles are bound together by
the strong attractive interaction in the lattice of N sites, the
ground state is, in principle, highly degenerate. As a result,
σx ∼ N=2, which agrees with ED results on clean systems.
However, any disorder or imperfection in the lattice,
which is inevitably present in any real system, breaks this
degeneracy and produces a unique ground state. Therein, the
N=2 particles occupy neighboring lattice sites, their position
is well defined, and the variance is zero, as we also find from
ED in the presence of weak impurities or disorder.
Dynamics of the center of mass.—To gain further insight

into the behavior of the center-of-mass operator, we evaluate
its autocorrelation function as χxðtÞ ¼ hx̂ðtÞx̂ð0Þi. Using
bqðtÞ ¼ bq expð−iωðqÞtÞ in Eq. (3), we obtain

χxðtÞ ¼
2K
π4

X∞
l¼1

1 − ð−1Þl
l3

expð−ivtπl=LÞ

¼ 2K
π4

X
b¼�

bLi3(b expð−ivtπ=LÞ); ð7Þ

with LisðzÞ the polylogarithm function, and χxð0Þ ¼ σ2x.
Although Eq. (7) looks complicated at first, it is rather well
approximated by χxðtÞ ≈ σ2x expð−ivtπ=LÞ. Similarly to the
variance of the center of mass, χxðtÞ is also independent of
any cutoff and depends only on the universal combination
vt=L. Its initial temporal slope is

cx ¼ i∂tχxðt → 0Þ ¼ h½x̂; H�x̂i ¼ 1

2πL
vK; ð8Þ

which depends only on the LL parameter K and the
renormalized velocity of the interacting theory. Therefore,
bymeasuring the variance of the center of mass and its initial
dynamics, one can easily extract the two and only two
essential ingredients of the LL theory, the velocity from v ¼
7ζð3ÞLcx=σ2xπ3 and the LL parameter from σx, as shown in
Fig. 1. In addition, Eq. (7) predicts a universal data collapse
of the center-of-mass oscillation; namely, upon rescaling its
magnitude by 1=K and its temporal evolution by v=L, all
curves should fall on top of each other, irrespective of the
strength or even the sign of the interaction, as shown in
Fig. 2. The time dependence spans severalN=J periods (with
N ¼ 26), and the agreement between numerics and Eq. (7)
remains excellent, even though K and v decrease or increase
by more than a factor of 2 from Jz=J ¼ −0.6 to 0.6,
respectively.
The center-of-mass autocorrelator is found to be univer-

sal at all timescales. This is somewhat surprising, since the
LL theory is designed to capture the low-energy physics,
and thus it is expected to be universal in the long time limit.
For χxðtÞ, on the other hand, already the short time
dynamics turns out to be universal. The lattice model in
Eq. (1) is integrable [1,2]; therefore, one may wonder
whether these persistent oscillations arise due to the large

number of constants of motion. Integrability is destroyed
by adding a second nearest-neighbor density-density (i.e.,
J0z
P

mnmþ2nm) interaction [20], which we have also
studied numerically for several Jz and J0z, yielding identical
results to the integrable case: The persistent oscillations
from Eq. (7) remain intact also for nonintegrable LLs.
Persistent oscillation shows up in theCalogero-Sutherland

model [21] as well, sensitive to the trapping frequency.
This is argued to be a specific feature following from the
integrability of the model and its long-range interaction.
The persistent oscillation in Eq. (7) is analogous to this and
scales with the “trapping frequency” vπ=L from the OBC.
The OBC can also arise from a sharp box trapping potential
[22,23]. However, the LL description applies to a large
variety of systems, including fermions, bosons, spins [3], etc.
Therefore, the persistent oscillation is expected to be a generic
feature in thesemodels, irrespective of themicroscopic details.
Full counting statistics.—Already, simple expectation

values of physical quantities often display rather complex
behavior. Higher moments of the observables contain,
however, infinitely more information and encode unique
information about, e.g., nonlocal, multipoint correlators and
entanglement, though they are typically difficult to access.
Their information content is equivalent to determining the
full distribution function of the quantity of interest.
Having studied simple correlation functions of the

center-of-mass coordinate, we now address its full counting
statistics [24–27]. Its probability distribution function is

PðXÞ ¼ hδðX − x̂Þi; ð9Þ
whose characteristic function can easily be evaluated to
yield GðpÞ ¼ hexpðix̂pÞi. Note that GðpÞ is reminiscent of
how the polarization operator is defined [7,8,28] for a
periodic boundary condition, using only integer multiples
of 2π for p. Here, on the contrary, p takes any real values in
the characteristic function, and the normalized position and
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FIG. 2. Demonstration of the data collapse for LL with strong
attraction and repulsion. The real (black solid curve) and
imaginary (black dash-dotted curve) parts of the center-of-mass
autocorrelator are plotted from Eq. (7) with t� ¼ L=vπ, together
with the numerical data from ED for N ¼ 26 and Jz=J ¼ 0.6
(circle) and −0.6 (square), normalized to the corresponding
variance. The only fit parameter for ED is the horizontal time-
scale, satisfying t� ∼ L=vπ.
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polarization operator x̂ is defined by Eq. (4) without any
ambiguity [9].
Since x̂ in the exponent is a linear function of bosonic

operators and the low-energy Hamiltonian is quadratic in
Eq. (2), the expectation value is evaluated as [29]

GðpÞ ¼ expð−p2hx̂2i=2Þ ¼ expð−p2σ2x=2Þ: ð10Þ

This is calculated also for Eq. (1) numerically using ED
after finite size scaling and plotted in Fig. 3, revealing
excellent agreement between Eq. (10) and the numerical
data. For smaller systems and especially for repulsive
Jz ∼ J, slight deviations show up from the Gaussian
behavior for large p, which stem from the fact that
kx̂k < N=2 is bounded for finite systems; therefore, devia-
tions appear in the tail, which diminish upon increasing the
system size. Its Fourier transform gives the probability
distribution function as a normal distribution with variance
σ2x as PðXÞ ¼ ð1= ffiffiffiffiffiffi

2π
p

σxÞ exp ½−ðX2=2σ2xÞ�. The normal
distribution itself is expected from the central limit theorem
in the thermodynamic limit. However, on the one hand, it is
surprising that already for small system sizes, where higher
moments could, in principle, deviate from Gaussianity, the
numerical data approach it very fast for systems with 8–10
particles, especially for attractive interactions. The same
distribution applies for attractive Bose-Einstein conden-
sates in a harmonic trap [30]. On the other hand, in contrast
to the smooth, almost N-independent behavior of GðpÞ
for the OBC and its nice agreement with bosonization in
Fig. 3, the very same quantity exhibits power law size
dependence for a periodic boundary condition as GðpÞ ∼
N−αðpÞ and the exponent αðpÞ does not follow the field
theory prediction [28].
Experimental ramifications.—There exists well-

developed experimental technology to observe these
effects. LLs are routinely realized in both cold atomic
settings, using spins, bosons, or fermions, and condensed
matter systems [3], including, e.g., carbon nanotubes,
described identically by Eq. (2). The center-of-mass coor-
dinate can be monitored using time of flight imaging [31],

in situ absorption imaging [10], or scanning tunneling
microscopy [32], allowing for the observation of its variance
as well as its full distribution function or at least some of its
lowermoments. These are all universal quantities, depending
on the interaction only through the LL parameter K. This is
tunable by changing the lattice parameters or tuning the
Feshbach resonance for cold atoms in a wide range, while
the interaction in condensed matter is controllable by tuning
the relative permittivity of the surrounding material.
The dynamics of the center-of-mass coordinate is meas-

urable by, e.g., tilting the lattice or applying a weak electric
field at time t ¼ 0, represented by the scalar potential of
the force F, which creates a perturbation H0 ¼ Lx̂FðtÞ as
in Refs. [33,34]. Then, within the linear response theory,
the motion of the center of mass follows as

hx̂ðtÞi ¼ −2L
Z

t

0

dt0Imχxðt − t0ÞFðt0Þ: ð11Þ

For short times, ImχxðtÞ ¼ −vKt=2πL, revealing the two
LL characteristics in a universal manner. Therefore, initially
hx̂ðtÞi ¼ vKt2F=2π after switching on a constant force F,
corresponding to the classical motion of a particle in an
external force F with “mass” ∼π=vK. Based on Eq. (7) and
Fig. 2, the hx̂ðtÞiwill exhibit persistent oscillations for longer
times with frequency vπ=L. At the same time, the variance of
the oscillating center ofmass remains unchanged, and it does
not spread during the oscillations, in spite of being built up
from many distinct dispersive modes. Note that Eq. (11) is
exact within the realm of bosonization; there are no higher-
order corrections in F. This follows from the linear
dispersion in ωðqÞ ∼ q, extending up to infinitely large
energies, without any band bending. This is completely
analogous to how the Born scattering limit of the Dirac-delta
potential is exact for the same linear dispersion [2].
The experimental setup in Ref. [10] can be readily used to

investigate these predictions. Therein, a weakly interacting
Bose gas of 7Liwasmonitored, and the dynamics of its center
of mass was measured in the presence of a strong driving
force, while our results apply in the opposite case of a strong
interaction and weak driving field, which is realizable
experimentally. In a related experiment [35], the center of
mass of noninteracting 7Li particles was measured in an
excited band, but interactions can be induced by making use
of its Feshbach resonances [36]. Our fermionic model in
Eq. (1) can equally be realized in terms of hard core bosons
[1], which corresponds to the Tonks-Girardeau limit of a 1D
Bose gas [37], created from 87Rb. The dynamics of the center
of mass is accessible following Refs. [10,35].
The dynamics of the center of mass is reminiscent of

Bloch oscillations [33,38], which also arise in the presence
of an external force, albeit the persistent oscillations in
Eqs. (7) and (11) arise in a strongly correlated quantum
liquid as opposed to the standard single-particle picture
behind Bloch oscillations [38]. The analogy with Bloch
oscillations is extended by noting that the reflection on the
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FIG. 3. Characteristic function of the center-of-mass coordinate
from bosonization (dashed line) together with the numerical data
from ED after finite size scaling to N → ∞ using N ¼ 14, 18, 22,
and 26 and Jz=J ¼ 0.6 (circle) and −0.6 (square).
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boundary of the lattice in our study plays the role of a Bragg
reflection at the boundary of the Brillouin zone in the
case of Bloch oscillations. The typical timescale of Bloch
oscillations, tB ¼ 1=aF with a the lattice constant, repre-
sents the time during which the full Brillouin zone is swept
through by the force, while the timescale for the center-of-
mass oscillation due to finite size effects from Eq. (7) isL=v,
i.e., the timescale for sweeping through the real space lattice.
Our results are observable on the timescale of t ∼ L=v ≪ tB
before Bloch oscillations set in, requiring weak forces in
Eq. (11) and, more importantly, small systems, which suits
ideally the experimental conditions.
Conclusions.—We have demonstrated that the center-of-

mass coordinate exhibits universal behavior in a Luttinger
liquid and bosonization gives essentially exact results for
all of its properties. Most importantly, the LL parameter
can be directly measured using the variance of the center-
of-mass coordinate. In combination with its short time
dynamics, the other basic characteristic of the underlying
quantum liquid, namely, the renormalized velocity, is
revealed. The correlation function as well as the full
counting statistics of the center-of-mass coordinate follow
a universal function, which are corroborated by analytical
and numerical methods. These are within experimental
reach in both condensed matter and cold atomic realiza-
tions, using setups similar to Bloch oscillations.
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