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We present a stochastic method for solving the time-dependent Schrödinger equation, generalizing a
ground state full configuration interaction quantum Monte Carlo method. By performing the time
integration in the complex plane close to the real-time axis, the numerical effort is kept manageable and the
analytic continuation to real frequencies is efficient. This allows us to perform ab initio calculation of
electron spectra for strongly correlated systems. The method can be used as a cluster solver for embedding
schemes.
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Introduction.—The time evolution of a closed interacting
electronic system, having been prepared in a well-defined
but entangled nonstationary state, is of considerable interest
to a broad range of fields. This includes many types of
electronic spectroscopy such as photoemission (PE) and
inverse photoemission (IPE) [1–3], core-level [4,5] and
optical spectroscopies, as well as the field of nonequili-
brium dynamics [6], including dynamics in driven, time-
dependent, external fields. In solid-state physics, such
electronic spectroscopies play a leading role in providing
information on the electronic structure of the material. In
weakly correlated materials, the GW approximation pro-
vides a viable theoretical tool for calculating excitation
energies [1,7]. In strongly correlated materials, however,
theoretical studies are often limited to model systems such
as the Hubbard [8] or Anderson [9] models. Efficient
methods have been developed for studying such models
[10,11]. However, it is not clear how these methods can be
generalized to ab initio calculations. Here we show how
this can be achieved using a time evolution method
stochastically applied to ab initio Hamiltonians.
Time evolution of quantum systems is a notoriously

difficult problem owing to the existence of a severe
dynamical sign problem. For electronic systems there is
another difficult sign problem due to its fermionic nature.
Fundamentally, we are required to integrate the time-
dependent Schrödinger equation for a many-electron sys-
tem for long times. Methods based on deterministic wave
function propagation, such as the Crank-Nicolson method
[12], or Lanczos recursion [13,14], suffer from severe
memory requirements. Quantum Monte Carlo methods
(especially quantum lattice methods) typically work in
imaginary frequency space [10,11], followed by analytic
continuation to real frequencies. The analytic continuation
is numerically highly ill conditioned, and maximum
entropy (ME) methods [15,16] are usually employed.
Although spectral features close to the Fermi energy can

be obtained rather accurately, features farther away, e.g.,
satellites, are smeared out (see Supplemental Material
[17]). Such satellites, however, can contain a wealth of
information about the dynamics of the system. In ab initio
models these problems are further exacerbated by the large
range of energies spanned by the basis set (over numerous
Hartrees) and the huge Hilbert spaces owing to the large
number of virtual orbitals.
In this Letter we present an approach to this problem. We

present a real-time generalization of an algorithm for
calculating fermionic ground states using imaginary-time
propagation. This involves the introduction of a second-
order time propagator, which is implemented in a stochastic
manner. This approach yields accurate time-correlation
functions, but the computational cost increases exponen-
tially, as the undamped time-evolving wave functions
explore the available (exponentially large) Hilbert space.
To ameliorate this problem, we introduce an adaptive
variable-phase time step into the propagator, which leads
to a propagation in the complex plane close to the real-time
axis. This results in a slow damping, which keeps the
computational cost essentially fixed (similar to a ground
state calculation). Nevertheless, this gives phase informa-
tion about the wave function and yields oscillatory time-
correlation functions. We have developed a ME scheme,
which performs analytic continuation from an arbitrary
path in complex time space to real frequencies. This
provides spectral functions over a broad energy range.
We apply the method to benchmark systems for which
numerically exact results are available, and show that these
are reproduced to high accuracy at a fraction of the cost.
Then we apply the algorithm to ab initio (atomic and
molecular) systems, where comparison is made with
experiment.
In ab initio calculations for solids, this method could be

used as a cluster solver in embedding schemes like
dynamical cluster approximation [10].
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Real-time evolution.—Given a Hamiltonian Ĥ and an
initial wave function jΨð0Þi, we wish to solve the time-
dependent Schrödinger equation:

i
∂
∂t jΨðtÞi ¼ ĤjΨðtÞi: ð1Þ

jΨðtÞi gives information about various spectroscopic prop-
erties. We can see this by considering the inverse photo-
emission spectrum AiiðωÞ,

AiiðωÞ ¼
X

n

jhΨNþ1
n jc†iσjΨN

0 ij2δðω − ENþ1
n þ EN

0 þ μÞ;

ð2Þ

where c†iσ adds an electron with spin σ to orbital i in the
ground state jΨN

0 i with N electrons. Here jΨNþ1
n i is the nth

excited state of the (N þ 1)-electron system. EN
0 and ENþ1

n

are the corresponding energies and μ is the chemical
potential. The formal solution of Eq. (1) is jΨðtÞi ¼
expð−iĤtÞjΨð0Þi≡ ÛðtÞjΨð0Þi. The spectrum is then
given by

AiiðωÞ ¼
1

π
Im

�
−i

Z
∞

0

dtei½ωþi0þþE0ðNÞþμ�thΨð0ÞjΨðtÞi
�
;

ð3Þ

where we have used the initial condition jΨð0Þi ¼ c†iσjΨN
0 i

and 0þ is a positive infinitesimal quantity and the calcu-
lated object is the Green’s function hΨð0ÞjΨðtÞi. In a
similar way, the photoemission spectrum can be calculated.
These formulas are discussed in detail in Supplemental
Material [17].
Methods.—To compute jΨðtÞi accurately for long propa-

gation times, we have adapted the full configuration
interaction quantum Monte Carlo (FCIQMC) method
[25–28]. This method was originally designed to stochas-
tically project the wave function, expressed in a full Slater
determinant basis fjDiig, towards the ground state. The
ground state algorithm uses a stochastic representation of
the full CI wave function Ψ ¼ P

iCijDii using signed
walkers Ci together with the repeated stochastic application
of a short-time propagator P̂ðΔτÞ ¼ 1 − ΔτĤ to the pop-
ulation of walkers, followed by walker annihilation at the
end of each iteration. More details are given in the
Supplemental Material [17].
Generalizing to the time-dependent problem, the wave

functionΨðtÞ ¼ P
iCiðtÞjDii is represented by a collection

of complex walkers, the time evolution of which is realized
through the successive application of a second-order
propagator:

Û2ðΔtÞ ¼ 1 − iΔtĤ −
1

2
ðΔtÞ2Ĥ2; ð4Þ

where Δt is a small time step. Thus, Ψðtþ ΔtÞ ¼
Û2ðΔtÞΨðtÞ. This approach preserves the norm of the
wave function to order OðΔt4Þ per step and OðΔt3Þ in
total, which is found to be sufficient to allow for stable
propagation for a long time, without significant norm-
conservation errors. In contrast, propagation using a first-
order propagator only leads to norm conservation of order
Δt, which leads to a severe violation of unitarity over
relevant timescales. The time evolution is implemented
using a second-order Runge-Kutta algorithm. Numerical
examples are provided in the Supplemental Material [17].
Although this method remains unitary to a good approxi-

mation, stochastic errors lead to a growth of the norm over
time (see Supplemental Material [17]), which becomes
unmanageable for large Hilbert spaces. We therefore allow
the time step Δt to acquire a phase α,

Δt ↦ e−iαΔt; ð5Þ

thereby introducing a damping in the propagator. The
phase is varied dynamically to keep the number of
walkers approximately constant. A small number of
walkers requires a large α, and increasing the number
of walkers reduces α. The pure real-time propagation
(α ¼ 0) is achieved in the large walker limit. Since
α ≠ 0 results in complex-time Green’s functions, we have
generalized the (imaginary-time) ME method [15,16] to
compute AðωÞ (see Supplemental Material [17]). The
analytic continuation is more accurate for small α, and
robustness of the calculated spectra can be checked by
comparing results for different numbers of walkers. To
obtain the statistics needed for the ME method, we run
several independent calculations.
Compared with the finite temperature Matsubara (imagi-

nary-time) formalism, this leads to three advantages. (i) The
ME method gives a more detailed spectrum, since the time
path is rather close to the real axis, rather than along the
imaginary axis. (ii) In each spectral calculation we shift μ
so that the peak closest to μ is located at μ. Since ME is
most accurate close to μ, this improves the accuracy.
(iii) For a given k, the weight of the PE and IPE spectra
may be very different. By performing the PE and IPE
calculations separately, we obtain a comparable relative
standard deviation in both cases, in contrast to the
Matsubara formulation. These aspects are discussed in
Supplemental Material [17] and illustrated in Fig. 1(c).
Application to the Hubbard model.—As a first example,

we consider the fermionic Hubbard model [8]. It is defined
by the Hamiltonian H ¼ −t

P
hi;jiσc

†
iσcjσ þU

P
ini↑ni↓.

We consider a two-dimensional square lattice with periodic
boundary conditions.
We apply the method to an 18-site cluster (18A in the

notation of Betts et al. [30]) at half filling, which is among
the largest Hubbard systems whose Green’s function can be
calculated numerically exactly using Lanczos recursion
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[13,31] (with a Hilbert space consisting of ∼2.4 × 109

determinants). To compute the Green’s function, we first
converge the ground state using imaginary-time FCIQMC
calculation, and then perform a complex time calculation
with a k ¼ ð0; 0Þ electron removed from the ground state.
A plane waves basis set is used here.
Three calculations are shown in Fig. 1 for U=t ¼ 2,

employing 70 000, 1.6 × 106, and 17 × 106 walkers, with
the corresponding time contours in the complex plane
shown in the inset. Even though the resulting spectrum for
the smallest walker number is qualitatively correct, it is
broadened and shifted versus the Lanczos spectrum.
Increasing the walker number to 1.6 × 106 gives less severe
damping. The peaks are still slightly displaced compared to
the exact result. For 17 × 106 walkers, α is small (≈0.12)
and the spectrum is fully resolved with the peaks in their
correct positions. The agreement in the weight distribution
also serves as an indicator of the impact of the walker
number. The memory used here is 270 Mb per processor.
This already involves significant performance-memory
trade-offs, such that a single replica of this calculation
can be run with less than 800Mb total memory, more than a
factor of 70 smaller than for the exact diagonalization.
Figure 1(c) shows the PE and IPE spectra for a 24-site

cluster with 22 electrons (24E in the notation of Betts et al.
[30]). This illustrates that calculations can be performed for
doped systems and for much larger Hilbert spaces
(∼6 × 1012) than exact diagonalization. For the IPE spec-
trum, the main quasiparticle peak and the main satellite
peak at higher energies are well resolved. This spectrum is
highly difficult to compute since the initial wave function is
highly multiconfigurational, as it is obtained by eliminating
the Hartree-Fock determinant keeping a very high number
of leading determinants with similar weight. For the PE
spectrum, both the main quasiparticle peak as well as two
satellite peaks can be clearly identified. As a comparison,
we show results using the Hirsch-Fye method [29], based
on the Matsubara formalism for T ¼ 0.2t. The Hirsch-Fye
PE spectrum is consistent with the FCIQMC spectrum, but
the peaks are not resolved. This is due to factors (i) and
(ii) above (performing analytical continuation from imagi-
nary times and not being able to shift the peak at −2.5t to
0). The weight of the IPE spectrum is only 0.035 and the
relative standard deviation about a factor of 25 larger for the
part of the Green’s function relevant for IPE than for the PE
relevant part [(iii) above].
Application to ab initio systems.—We employ the

scheme for ab initio systems, namely the carbon atom
and the carbon dimer at equilibrium distance. Here, the
Hamiltonian is the molecular Hamiltonian in the Born-
Oppenheimer approximation,

H ¼
X

p;q;σ

hpqc
†
pσcqσ þ

X

p;q;r;s;στ

Vrs
qpc

†
rσc

†
sτcpτcqσ; ð6Þ

(a)

(b)

(c)

FIG. 1. (a) Time evolution of RehΨð0ÞjΨðtÞi and contour
in complex time and (b) corresponding photoemission spectra
(for μ ¼ 0) for the time evolution using 70 000, 1.6 × 106, and
1.7 × 107 walkers for the 18-site Hubbard model at U=t ¼ 2,
k ¼ ð0; 0Þ, and half filling. All calculations start from the same
initial state with 350 000 walkers, and three different time con-
tours were used leading to 70 000, 1.6 × 106, and 1.7 × 107

walkers for longer times. The utilized time step is 10−3. Both the
Lanczos and FCIQMC spectra were convoluted with a Lorentzian
of FWHM of 0.02 to simplify visual comparison of the FCIQMC
spectrum to the discrete eigenvalues obtained in the Lanczos
method. The integrated weights of the peaks of the FCIQMC
spectra are indicated and agree well with the weights of the
discrete Lanczos spectrum, which are given in the first graph of
(b). The bracketed numbers indicate the weights of not fully
resolved peaks. (c) Photoemission and inverse photoemission
spectra for a 24-site cluster with lattice vectors (3,3) and ð−5; 3Þ
with 22 electrons at U=t ¼ 4 for k ¼ ð0; 0Þ obtained using
∼1.5 × 108 and ∼3 × 107 walkers respectively. The inverse
photoemission part carries very low weight and is also shown
in the inset. For comparison, the same spectrum computed by
means of the Hirsch-Fye [29] auxiliary-field quantum
Monte Carlo (AFQMC) calculation is displayed.
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where hpq contains the one-body integrals of the
Schrödinger Hamiltonian, and Vrs

pq the two-body
Coulomb integrals of the electron-electron interaction.
We used the cc-pVXZ basis sets with X ¼ T, Q (referred
to as VXZ in the following), containing 28 and 54 functions
per atom, respectively, in the frozen-core approximation.
The required Hamiltonian integrals were computed over
restricted Hartree-Fock orbitals using MOLPRO [32].
For the carbon atom, we show the multiplet structure of

the ground state in Fig. 2, obtained over a trajectory of
1600 a.u. of time.
Because of the small system size, we performed the

propagation in pure real time, with a time step of
Δt ¼ 5 × 10−3. A small constant damping with a decay
constant of 3 mH is applied that has negligible influence on
the spectral function, but reduces the growth of walkers and
allows for longer propagation times. The cation ground
state energy from the ground state computation for the
preparation of the initial state is EN−1

0 ¼ −37.3706H,
which gives an ionization energy of 420 mH, agreeing
reasonably well with the experimental finding of 413.8 mH
[33]. The inset of Fig. 2 shows the oscillations of the
overlap hΨð0ÞjΨðtÞi and corresponding spectra. The result-
ing excitation energies agree fairly well with experiment.
Next, we consider spectral functions of a prototypical

strongly correlated molecule, the carbon dimer at equilibrium
distance. To target specific states, we simulate photoabsorp-
tion (PA) spectroscopy. To do so, the initial 1Σþ

g state is
prepared by performing a ground state calculation on the

neutral carbon dimer using FCIQMC calculations, and then
applying the single excitation operator c†i cj on the resulting
walker population. Specifically, we consider the excitations
from 1πu to the 3σg and the excitation from 2σu to 3σg. The
former couple to Πu states, while the latter couple to Σþ

u
states. Since the excitations generate open-shell determi-
nants, the resulting spectra couple to both singlet and triplet
states.
The resulting spectra for the two basis sets are shown in

Fig. 3. We additionally compare to projector QMC values
computed using the excited-state i-FCIQMC method [34]
and using the ground state energies calculated in Ref. [35]
as references. The involved Hilbert spaces contain, respec-
tively, 1010, 1012 Slater determinants. Sharply resolved
peaks which correspond to 3Πu, 3Σþ

u , 1Πu, 1Σþ
u could be

identified. We also performed photoemission and inverse
photoemission calculations for the C−

2 and Cþ
2 , respec-

tively; the resulting energies for the excited states of the
neutral C2 are listed in Fig. 3. We find that the inverse
photoemission spectra feature the lowest stochastic error
while the photoemission results have a higher error. A
rotation of time in the complex plane by an angle of α in the
range [0.1, 0.2] is applied. The dependence of the spectra
on the basis set is in line with the known basis-set
dependence of relative energies in molecular systems,
for example, ionization energies and electron affinities
from FCIQMC quantum chemical studies [26,36,37].
The vertical transition energies obtained here are larger
than the experimentally observed values. A previous
analysis by Holmes et al. [38] of the excited-state potential

FIG. 2. Atomic multiplet of the carbon atom, obtained from two
distinct initial states created by adding a 2p electron to the cation
ground state. One of the states is prepared as a singlet (red). The
second state (blue) is a mixture of singlet and triplet but with
Lz ≠ 0. The time evolution is carried out for 1600 a.u. of time and
the zero of the frequency axis corresponds to −37.3706H, which
is the ground state energy of the cation computed using the
projective FCIQMC algorithm. The VTZ basis is used in this
example. The experimental values are according to Ref. [33]. The
frequency resolution is 3.9 mH. The inset shows a portion of the
computed Green’s function in real time.

FIG. 3. Photoabsorption spectra for the carbon dimer for a
single excitation from the 2σu to the 3σg (blue) and from the 1πu
to the 3σg (red) orbital using VXZ basis sets. Also shown is
spectral decomposition of the FCIQMC ground state (green) as a
reference. The spectra are not normalized for better display. For
the VTZ basis set, we also computed Σu photoemission (PE) and
inverse photoemission (IPE) spectra for the C−

2 and Cþ
2 , respec-

tively. All energies and spectra are obtained with ME analytic
continuation from 44–48 independent calculations. The exper-
imental values are taken from Ref. [39]; these are also used to
attribute singlet and triplet states and the � symmetry of the Σ
states. The zero of the frequency axis is set to −75.649H. The
time step used is Δt ¼ 10−3 for the VTZ basis set and Δt ¼ 10−3

(green) and Δt ¼ 5 × 10−4 (red and blue) for the VQZ basis set.
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energy curves shows a significant effect of bond-length
variation for the states considered here, indicating the likely
nonvertical character of the experimental transitions.
Conclusions.—We have presented an efficient method

for solving the time-dependent Schrödinger equation. We
generalize a full configuration interaction quantum
Monte Carlo method to calculations for complex times
close to the real axis. We then develop a maximum entropy
method for analytic continuation from complex times to
real frequency. The method can be used to calculate
electron spectra. The imaginary component of time
strongly limits the numerical effort without a strong
negative impact on the analytic continuation. We demon-
strated that spectra of the Hubbard model can be obtained
in good agreement with exact Lanczos calculations. We
then applied the method to ab initio systems, the C atom,
and the C2 molecule, and obtained good agreement with
experiment for excitation energies. The method can be used
as a cluster solver in embedding schemes for solids. It can
also be used to study small systems in strong external fields
without any assumptions about linear response.
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