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It is now well established that structural glasses possess disorder- and frustration-induced soft
quasilocalized excitations, which play key roles in various glassy phenomena. Recent work has established
that in model glass formers in three dimensions, these nonphononic soft excitations may assume the form
of quasilocalized, harmonic vibrational modes whose frequency follows a universal density of states
DðωÞ ∼ ω4, independently of microscopic details, and for a broad range of glass preparation protocols.
Here, we further establish the universality of the nonphononic density of vibrational modes by direct
measurements in model structural glasses in two dimensions and four dimensions. We also investigate their
degree of localization, which is generally weaker in lower spatial dimensions, giving rise to a pronounced
system-size dependence of the nonphononic density of states in two dimensions, but not in higher
dimensions. Finally, we identify a fundamental glassy frequency scale ωc above which the universal ω4 law
breaks down.
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Introduction.—Understanding the statistical and struc-
tural properties of low-frequency excitations in disordered
solids is a long-lasting challenge in condensed matter
physics [1–15]. It is generally accepted that in addition
to the well-understood long-wavelength phonons that dwell
at low frequencies, other soft excitations that stem from
different aspects of the microstructure and/or the disorder
may emerge. These excitations have been argued to play an
important role in determining transport [2,7,11], static
[16,17], and thermodynamic [1,11] properties of disordered
solids, as well as to control relaxation patterns in equilib-
rium supercooled liquids [18–21], and plastic flow rates in
externally deformed glasses [22,23].
One of the origins of the nonphononic low-frequency

vibrational modes is related to the degree of connectedness
of the underlying network of (strong) interactions formed
between the constituent particles of a disordered solid.
Upon decreasing the connectedness of the aforementioned
network, which can occur, e.g., by carefully decompressing
packings of soft repulsive spheres [5], the rigidity of a glass
becomes gradually compromised, a phenomenon known as
“unjamming” [24,25], and is accompanied by the appear-
ance of low-frequency nonphononic vibrational modes
whose characteristic frequency vanishes when rigidity is
completely lost. This emergence of soft vibrational modes,
as well as many other aspects of the unjamming phenom-
enology, are well captured by variational arguments [26,27]
and mean-field theories [10–13].
In a broad class of glass-forming models, referred to in

what follows as “generic” glass-forming models [28], the
unjamming phenomenology is often irrelevant, as these
systems dwell far away from the critical unjamming point

[30]. Notwithstanding, generic model glasses still feature
soft nonphononic excitations; examples of such excitations
are presented in Fig. 1. Recent investigations of generic
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FIG. 1. Visualizations of soft quasilocalized vibrational modes
in (a) 2D, (b) 3D, and (c) a 3D projection of a 4D mode. We plot
the largest 3%, 0.1%, and 0.01% components, that amount to
approximately 70%, 92%, and 87% of the displayed modes’
weights in 2D, 3D, and 4D, respectively. The modes displayed
have frequencies of roughly half the respective longest wave-
length transverse phonon frequency or less, and were calculated
in a generic model glass of purely repulsive spheres interacting
via a r−10 pairwise potential; see text for details. (d) Symbols
represent the spatial decay of the squared magnitude (see [31] for
details) of the modes shown in panels (a)–(c), as a function of the
distance r away from the modes’ respective cores.
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glass-forming models in three dimensions (3D) have
established the following general observations.
(1) The softest nonphononic excitations in generic glass

models are quasilocalized: they feature a spatial structure
consisting of a disordered core of size ξ (on the order of ten
particle diameters), decorated by a power-law decay∼r−2 at
distances r away from the core [14,31,32], as demonstrated
in Fig. 1.
(2) Because of strong hybridizations with long-wave-

length phonons (elastic waves), soft quasilocalized excita-
tions may only assume the form of harmonic vibrational
modes (i.e., eigenfunctions of the dynamical matrix, see
definition below)when (i) systems aremade small enough to
suppress the occurrence of phonons at very low frequencies
[14,32,33], but still larger in linear size than the core size ξ,
or (ii) system sizes are employed for which a coexistence
frequency window of nonphononic quasilocalized vibra-
tional modes and phonons opens. Within this coexistence
frequency window, which has been shown in [15] to vanish
in the thermodynamic limit, quasilocalized excitations can
assume the form of harmonic vibrations if their frequencies
fall in the gaps between neighboring phonon bands, as
observed in [34,35]. The proximity of phonons with similar
frequencies to quasilocalized vibrational modes’ frequen-
cies can alter the latter’s far-field structure, which may
feature a phononic background [34,36,37] instead of a
power-law decay away from their cores. We note that the
effect of quasilocalized modes on various phenomena in
glasses is not expected to depend on their observability as
harmonic vibrational modes, as discussed, e.g., in [1,23].
(3) The existence of soft quasilocalized excitations

depends crucially on the presence of frustration-induced
internal stresses [33,34], which are a generic feature of
structural glasses [38].
(4) When soft quasilocalized excitations are realized as

harmonic vibrational modes, their frequencies follow a
universal nonphononic distribution DðωÞ ∼ ω4 [14], which
persists over a broad range of glass preparation protocols
[33,39,40]. Several theoretical frameworks predicted this
universal distribution [1–3].
While important progress in elucidating the degree of

universality of the nonphononic vibrational density of states
(VDOS) has been recently made [14,15,32,33,39,41], sev-
eral fundamental questions remain open. (i) Is the ω4 law
universal across spatial dimensions? (ii) Are there clear
signatures of dimension-dependent finite-size effects on the
nonphononic VDOS, and, if so, what is their origin?
(iii) Does a frequency scale exist above which the universal
ω4 law breaks down?

In this Letter, we address these pressing questions; we
show that the form of the nonphononic VDOS DðωÞ ∼ ω4,
which has been previously observed only in 3D models,
persists in two dimensional (2D) and four dimensional (4D)
model glasses as well, firmly establishing its universality.
We also directly demonstrate the quasilocalized nature of
these nonphononic modes. These results cast doubt on the
claims that the effective medium theory [11] and the
infinite-dimensional mean-field theory [12], which predict
a different scaling, are relevant to realistic dimensions away
from unjamming [42]. We further demonstrate that the
degree of localization of quasilocalized vibrational modes
(QLVM) is weaker in lower dimensions, giving rise to a
pronounced system-size dependence of the nonphononic
VDOS in 2D. Finally, by exploiting the scaling of phonon
frequencies and the stronger localization of QLVM in 4D,
our analysis reveals an emergent cutoff frequency ωc above
which the ω4 law breaks down. We speculate about the
implications of ωc and mention future research directions.
Model glass and methods.—We employ a well-studied

glass-forming model that consists of a 50∶50 mixture of
“large” and “small” particles of massm in 2D, 3D, and 4D.
N particles are enclosed in a đ-dimensional hypercube of
edge length L with periodic boundary conditions, and
interact via a radially symmetric purely repulsive pairwise
energy that varies with the distance r between particles
proportionally to ϵðλ=rÞ10, with λ and ϵ denoting our
microscopic units of length and energy, respectively. A
complete description of the model can be found, e.g., in
[40]. In what follows, all observables should be understood
as expressed in terms of the appropriate microscopic units.
We choose the densities ρ≡mN=Lđ to be 0.86, 0.82, and
0.80 in 2D, 3D, and 4D, respectively, such that the first
peak of the radial distribution function gðrÞ is approxi-
mately aligned across dimensions. Glassy samples in all
dimensions were created by equilibrating the fluid phase at
T ¼ 1.0 and then cooling systems deep into the glassy
phase (down to T ¼ 0.1) at a constant rate of _T ¼ 10−3.
Residual heat was then removed by performing an energy
minimization. The number of glassy samples generated for
each ensemble is detailed in Table I. Vibrational modes
were calculated by a partial diagonalization of the dynami-
cal matrix M≡ ∂2U=∂x⃗∂x⃗, where x⃗ denotes particles’
coordinates. The Debye frequencies (defined, e.g., in [43])
are found to be ωD ≈ 20.2, 17.3, and 23.3 in 2D, 3D, and
4D, respectively.
Results.—Figure 2 displays our main result; in panels (a),

(b), and (c) we display the ensemble-average VDOS DðωÞ

TABLE I. System and ensemble sizes of glassy samples generated.

2D 3D 4D

N 196 400 786 1600 1 K 2 K 4 K 5 K 10 K 20 K
Ensemble size 1M 490 K 250 K 122.5 K 50 K 50 K 100 K 4 K 2 K 1 K

PHYSICAL REVIEW LETTERS 121, 055501 (2018)

055501-2



measured in our 2D, 3D, and 4D glassy samples, respec-
tively. At low frequencies we find

DðωÞ ∼ ω−5
g ω4; ð1Þ

in all spatial dimensions studied, firmly establishing the
universality and fundamentality of this emergent law. We
further find that ωg¼ωgðN;đÞ is a dimension- and system-
size-dependent prefactor [44]. Noticeably, the dependence
of ωg on N is much stronger in 2D compared to 3D and 4D.
Where does the pronounced system-size dependence of

the VDOS in 2D emanate from? In Fig. 1 we show examples
of vibrational modes that populate the ω4 tails of the VDOS
across all investigated spatial dimensions. Consistent with
previous observations in 2D and 3D [14,31,32], we find that
these modes feature a disordered core of linear size on the
order of 10 particle diameters, decorated by a power-law
decay ∼r−ðđ−1Þ at distances r away from the core. These
power-law spatial decays lead us to expect that the character-
istic frequency scales of QLVM should feature an N and
đ dependence, that would in turn translate to N- and đ-
dependent prefactors ω−5

g of the ω4 VDOS.
To estimate ωgðN; đÞ we consider similar objects—the

linear displacement response fields to local force dipoles
[40,45]; such responses feature similar spatial structures to
those of QLVM [40], and in particular their far fields also
scale as r−ðđ−1Þ at distances r away from the force dipole,
just as seen for QLVM in Fig. 1. The stiffness (frequency
squared) associated with these fields was derived in [40]
using the elastic Green’s function in đ dimensions; the
result reads

ωgðN; đÞ ∼
� ðlogNÞ−1=2; đ ¼ 2;

ωg;∞ þ AN−ðđ−2Þ=đ ; đ > 2:
ð2Þ

This result predicts that the prefactor of the nonphononic
VDOS grows without bound as ω−5

g ∼ ðlogNÞ5=2 in 2D, but

converges to a constant for large N in đ > 2, in qualitative
agreement with our observations.
We next turn to a statistical analysis of the degree of

localization of QLVM across dimensions and system sizes.
To this aim we consider the participation ratio e of a general
field z⃗, defined as

e≡ ðPiz⃗i · z⃗iÞ2
N
P

iðz⃗i · z⃗iÞ2
; ð3Þ

where z⃗i denotes the đ-dimensional Cartesian components
of z⃗ pertaining to the ith particle. The participation ratio is a
general indicator of the degree of localization of a field:
extended fields feature participation ratios of order unity,
whereas e ∼ N−1 for localized fields.
Figure 3 presents the running averages ē of the participa-

tion ratio e of vibrational modes, representing here z⃗, binned
over their frequenciesω andmultiplied by the system sizeN.
Panels (b) and (c) show data for 3D and 4D, respectively, and
demonstrate that the participation ratio of QLVM that
populate the ω4 tails of the VDOS follow e ∼ N−1, while
the 2D data displayed in panel (a) clearly show e ≁ N−1.
Building again on the observation that QLVM feature a
r−ðđ−1Þ spatial decay beyond a scale ξ, we estimate to leading
order e ∼ N−1 for đ ≥ 3, but e ∼ ðlogNÞ2=N in 2D, in
qualitative consistence with our observations.
The cutoff frequency ωc.—In addition to firmly establish-

ing the universality of the nonphononic ω4 VDOS, the
study of QLVM in 4D reveals an important frequency scale
ωc above which the ω4 scaling breaks down, that is difficult
to observe cleanly in lower dimensions. As opposed to
observations in 2D and 3D, where the lowest frequency
phonons overlap the ω4 scaling regime, the breaking down
of the universal ω4 scaling in 4D is not the result of the
intrusion of phonons, but instead is seen as an intrinsic, N-
independent, emergent property of the VDOS.
The emergence of ωc is demonstrated in detail in

Fig. 4, where we plot the cumulative distributions

(a) (b) (c)

FIG. 2. Sample-to-sample average of the density of vibrational modes DðωÞ, in (a) 2D, (b) 3D, and (c) 4D glasses, for a variety of
system sizes as indicated by the legends. We find DðωÞ ∼ ω4 in all spatial dimensions. The intrusion of phonons into the ω4 scaling
regime upon increasing system size is clearly observed in our 2D data. Noticeably, the prefactor of the ω4 scaling appears to be system-
size independent in 3D and 4D, but not so in 2D, where it grows with increasing system size; see text for discussion. The frequency axes
are rescaled by ω0 ¼ 1.0, 1.6, 2.8 for 2D, 3D, and 4D, respectively, for visualization purposes. The vertical axes are rescaled such that
DðωÞ ∼ 1 for the lowest frequencies measured.
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CðωÞ≡ R
ω
0 Dðω0Þdω0 rescaled by ω5, see caption for

further details. Figure 4(b) presents data calculated for
4D glasses, and clearly shows the emergence of the cutoff
frequency ωc—the frequency above which the plateau of
CðωÞ=ω5 ends, marked by the vertical arrow. Our 4D data
indicate that ωc is independent of system size. In the 3D
data displayed in Fig. 4(a), the cutoff frequency ωc can be
only seen for N ¼ 1000; for N ¼ 2000 the first phonon
band marked by the dashed horizontal line comes too close
to ωc and obstructs its visibility. We find ωc=ωD ≈ 0.05 for
both 3D and 4D.
Summary and discussion.—In this Letter, we showed

that the nonphononic VDOS in structural glasses follows
an ω4 law in 2D, 3D, and 4D, firmly establishing its

universality. We further demonstrated that the degree of
localization of the modes that populate the ω4 tails of the
VDOS is weak in 2D, giving rise to a pronounced system-
size dependence of the prefactors ofω4 scaling of theVDOS,
and to a scaling e ≁ N−1 of the participation ratio e of
low-frequency quasilocalized vibrational modes, whereas
e ∼ N−1 is found in 3D and 4D. Finally, we showed that by
employing simulations in 4D we are able to cleanly identify
a frequency scale ωc above which the ω4 scaling of the
VDOS breaks down.
Our estimate ωc=ωD ≈ 0.05 may have interesting impli-

cations; if we take TD ≈ 200 K as a rough estimate of the
Debye temperature of many structural glasses, then ωc
translates into a temperature scale of 10 K. This temper-
ature scale appears to coincide with the temperature at
which the specific heat of many structural glasses, when
normalized by T3 (Debye model’s prediction), exhibits a
maximum [46,47]. It remains to be seen whether the similar
magnitude of these two temperatures is deep or a mere
coincidence. The robustness of ωc should also be tested in
the nonlinear excitations framework put forward in [31,32].
The observed persistence of the ω4 law across spatial

dimensions rules out the scenario proposed in [7] that the
nonphononic VDOS follows DðωÞ ∼ ωđþ1, and stands in
contrast to mean-field approaches [11,12] that predict a
dimension-independent nonphononic VDOS that follows
DðωÞ ∼ ω2. It remains to be seen whether for đ > 4

deviations from the ω4 law are observed. Finally, we note
that recent computational advances support that the ω4 law
persists in deeply annealed glasses [48], albeit with a
strongly suppressed prefactor ω−5

g . This observation is
consistent with experiments on vapor-deposited glasses
[49] suggesting the depletion of tunneling two-level sys-
tems, which are believed to be intimately related to
quasilocalized excitations [1,41].
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(a) (b)

FIG. 4. Cumulative distributions CðωÞ≡ R
ω
0 Dðω0Þdω0, di-

vided by ω5 for (a) 3D systems and (b) 4D systems. The
frequency axes are rescaled by ω0 ¼ 3.3 (2.8) in 3D (4D) for
visualization purposes. The vertical lines indicate the estimated
position of the first phonon band; i.e., they follow 2π

ffiffiffiffiffiffiffiffiffi
G=ρ

p
=L

with G the athermal shear modulus. The cutoff frequency scale
ωc is marked by the vertical arrows, at the frequency at which
CðωÞ=ω5 dips downwards from the low-frequency plateau, the
latter reflecting the ω4 scaling of DðωÞ.

(a) (b) (c)

FIG. 3. Running averages ē of the participation ratio e (see text for definition) of low-frequency vibrational modes measured in (a) 2D,
(b) 3D, and (c) 4D glasses, scaled by the system size N, binned over and plotted against frequency ω. For visualization purposes the
frequency axes are rescaled by the same scales ω0 as reported in the caption of Fig. 2. The peaks of ē correspond to the lowest frequency
phonons [15].
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