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Negative effective masses can be realized by engineering the dispersion relation of a variety of quantum
systems. A recent experiment with spin-orbit coupled Bose-Einstein condensates has shown that a negative
effective mass can halt the free expansion of the condensate and lead to fringes in the density
[M. A. Khamehchi et al., Phys. Rev. Lett. 118, 155301 (2017)]. Here, we show that the underlying
cause of these observations is the self-interference of the wave packet that arises when only one of the two
effective mass parameters that characterize the dispersion of the system is negative. We show that spin-orbit
coupled Bose-Einstein condensates may access regimes where both mass parameters controlling the
propagation and diffusion of the condensate are negative, which leads to the novel phenomenon of
counterpropagating self-interfering packets.
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The most straightforward definition of mass in classical
physics is expressed by Newton’s second law. The accel-
eration a of an object is related to the net force F acting
upon it, with the massm being the proportionality constant:
F ¼ ma. In this context, a particle with a negative mass
would behave strangely by accelerating in the opposite
direction of an applied force. This cannot happen in free
space, but the concept of mass can be extended beyond this
simple scenario. In solid-state physics, an effective mass
was originally introduced to describe the motion of
electrons in the periodic potential induced by crystal
lattices [1]. The effective massm� is related to the curvature
of the dispersion relation, and for many quasiparticles, this
is nonparabolic, leading to a mass that depends on the wave
vector. A negative m� can occur, e.g., for semiconductor
holes near the top of a valence band.
A more general definition of mass is required when we

consider both the propagation and diffusion of wave
packets. The dispersion can be expanded in a Taylor
series around k0 as EðkÞ ≈ E0 þ ℏ2k0ðk − k0Þ=m1ðk0Þ þ
ℏ2ðk − k0Þ2=½2m2ðk0Þ� þ � � �, and the coefficients of each
order term relate to a new mass parameter that has certain
characteristic effects on the dynamics [2,3]. We define

m1ðkÞ ¼ ℏ2k½∂kEðkÞ�−1; ð1Þ

m2ðkÞ≡m� ¼ ℏ2½∂2
kEðkÞ�−1: ð2Þ

The parameter m1 is related to the classical motion of
the wave packet via the group velocity vg ¼ ℏk=m1. The
parameter m2 determines the acceleration of the packet

when an external force is applied, as well as its rate of
diffusion [4]. For a purely parabolic dispersion, we would
find that m1 ¼ m2, but in other systems, m1 and m2 can
have different signs, be zero, or even become infinite.
A number of experimental platforms in physics now

allow dispersion engineering. For example, exciton-
polaritons produced in semiconductor microcavities [5]
have a nonparabolic dispersion that can be controlled by
detuning the cavity and the exciton modes, leading to a
variety of exotic effects [6–8]. Recent theoretical and
experimental studies have shown that polariton wave
packets can exhibit a counterintuitive flow resulting from
a divergence of the effective mass m2, in the form of self-
interfering packets (SIP) [4], backflow [9], and super-
luminal X waves [10]. When the wave packet spreads over
this singularity of the mass, it straddles regions of positive
and negative effective mass, effectively bouncing the
packet back onto itself and producing self-interference.
Another system that allows for the control of the

dispersion of wave packets is an atomic Bose-Einstein
condensate (BEC). Early experiments demonstrated
dispersion engineering by loading a condensate into a
weak optical lattice [11–13]. Bright solitons were sub-
sequently realized in repulsive atomic and polariton BECs
by loading them into a quasimomentum state with negative
m2 to counterbalance the effect of repulsive interactions
[13,14]. More recently, artificial spin-orbit interactions in
two-component BECs have allowed the engineering of
more complex dispersions through the control of the
Raman laser setup [15–17]. Interestingly, this allows the
possibility of generating negative regions for both m1 and
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m2, which is not straightforward to achieve in polariton
systems. In recent work, Khamehchi et al. have shown how
the peculiar dispersion relation of an atomic spin-orbit
coupled Bose-Einstein condensate (SOCBEC) can indeed
lead to unconventional wave packet dynamics, interpreted
as “negative-mass hydrodynamics,” and reported phenom-
ena such as self-trapping, soliton trains, and dynamical
instabilities [18].
In this Letter, we clarify the role of the two effective mass

parameters m1 and m2 in determining the condensate
dynamics in the SOCBEC platform. In particular, we show
that the experimental observation of inhibited expansion by
Khamehchi et al. [18] arises from a negative m2 parameter
and leads to the linear SIP phenomenon predicted earlier
for exciton-polariton BEC [4]. In the experiment, the
nonlinearity of the condensate then causes the interference
fringes from the SIP to transform into solitons. We further
show that a negative m1 parameter can also be achieved in
SOCBECs and would lead to the more striking phenom-
enology of a wave packet moving in the opposite direction
of its momentum. In particular, we investigate the dynamics
in a regime where bothm1 andm2 are negative, which leads
to the condensate splitting into two counter-propagating
SIPs. This is within reach of the current experimental
platforms by simply tuning the Raman parameters. A clear
understanding of the underlying mechanics of the wave
packet dynamics can be obtained by performing its wavelet
decomposition. Our work thus provides a comprehensive
understanding of the effect of negative masses in
SOCBECs.
We consider an identical spin-orbit coupling setup to

Khamehchi et al. [18], with a 87Rb BEC for which two
internal 5S1=2 spin states are isolated, leading to the so-
called hyperfine pseudospin-up and pseudospin-down
states [15]: j↑i ¼ jF ¼ 1; mF ¼ 0i and j↓i ¼ jF ¼ 1;
mF ¼ −1i. Two Raman lasers are used to couple the
two states with a strength Ω and detuned by δ=2 from
the Raman resonance, as shown in Fig. 1(a). The system
dynamics is described in units of energy and momentum
defined by the recoil energy ER ¼ ðℏkRÞ2=2m and Raman
wave vector kR ¼ 2π=

ffiffiffi
2

p
λR, where λR is the Raman

wavelength. For a homogeneous and noninteracting gas,
the system is described by the k-space Hamiltonian [15],

H ¼
� ℏkðkþ2kRÞ

2m þ δ
2

Ω
2

Ω
2

ℏkðk−2kRÞ
2m − δ

2

�
; ð3Þ

which acts on the spinor field ψ ¼ ðψ↑;ψ↓ÞT .
Diagonalizing the Hamiltonian mixes the spin states and
leads to upper (þ) and lower (−) energy bands,

E�ðkÞ ¼
ℏk2

2m
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
γkþ δ

2

�
2

þ
�
Ω
2

�
2

s

; ð4Þ

where γ ¼ ℏkR=m. The dispersion relation for the lower
band for two sets of Raman laser parameters kR, Ω, and δ,
are shown as a blue line in Figs. 1(c) and 1(d). As both are
clearly nonparabolic, it is important to consider both the
first and second mass parameters, rather than only m2 that
was discussed in Ref. [18]. The parameter space for m1 is
plotted in Fig. 1(b), where we have identified the sets of
parameters considered in Ref. [18] as well as those of the
present Letter. We emphasize that the dispersion relation
in Fig. 1(c) is identical to one set of SOC parameters
considered in Ref. [18].
We now focus on the properties of the lower branch. An

inflection point of this branch corresponds to a change of
sign of m2, which becomes infinite at the points k1;2

FIG. 1. (a) Schematic of the experimental configuration. The
BEC initially resides at the bottom of the lower branch shaped by
the spin-orbit coupling (see energy level diagram). The trap is
then released in the x dimension to let the BEC expand.
(b) Parameter space for m1, defined by the momentum range
jk3–k4j for which m1 is negative. Blue dots: configurations
considered in [18]. Green dots: configurations explored here.
(c) SOCBEC dispersion properties forΩ ¼ 2.5, δ ¼ 1.36, kR ¼ 1
(from Ref. [18]). Blue line: lower branch E−. Green line: effective
mass m1. Purple line: effective mass m2. Red dashed line: group
velocity v. The lower branch presents a region with m2 < 0,
where v decreases with increasing k. (d) As for (c), but Ω ¼ 1,
δ ¼ 0.7, kR ¼ 1, E− has regions with both m1 < 0 and m2 < 0,
and v has an opposite sign to the momentum. (i–iii) Examples of
wave packet propagation, the colored stars indicate where E− is
excited.
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meaning that wave packets with this quasimomentum do
not diffuse [19]. Similarly, one can define the points k0;3;4 at
which the massm1 diverges [19]. Most of the dynamics can
now be understood regarding only the k-dependent group
velocity vðkÞ, directly shaped bym1 andm2 [19]. As can be
seen in Figs. 1(c) and 1(d), the linear parts of the dispersion,
when m2 diverges at k1;2, lead to a local minimum or
maximum for the group velocity. Similarly, v is zero when
the dispersion is locally flat at the points k0;3;4 and takes
negative values between k3 and k4, where m1 < 0. A
negative m1 here corresponds to the packet moving in
the opposite direction to the applied impulse, thus reversing
the sign of the group velocity. We show in Figs. 1(i)–(iii)
typical examples of wave packet propagation when exciting
the branch at different quasimomenta.
For the dispersion shown in Fig. 1(c), consider applying

an impulse to move from the red (i) to the green (ii) star,
where m2 < 0. The wave packet decelerates but keeps
propagating in the same direction. Conversely, for the
dispersion shown in Fig. 1(d), applying an impulse to move
from the red (i) to the purple star (iii) (where v < 0), one
sees that the wave packet not only slows down but actually
reverses direction. We have provided an online interactive
plot of the dispersion as a function of its key parameters δ,
Ω, and kR [20].
We now analyze one-dimensional simulations of the

dynamics of SOCBEC expansion in the context of m1 and
m2 using the experimental parameters for δ ¼ 1.36 and
Ω ¼ 2.5 from Ref. [18,21]. The dynamics of a 1D BEC
initially positioned at the bottom of the lower branch and
released from a harmonic trap in one direction can be
described by a single-band Gross-Pitaevskii equation:

i∂tψðxÞ ¼ F−1
x ½E−ðkÞψðkÞ� þ gjψðxÞj2ψðxÞ; ð5Þ

where E−ðkÞ is the lower branch dispersion derived in
Eq. (4) and shown in Fig. 1(c), F−1

x is the inverse Fourier
transform, and g the effective 1D interaction strength.
We initially focus on the linear dynamics by setting g¼0

so that we can study the free wave packet propagation with
this dispersion, for which only m2 is negative. We begin
with a narrow Gaussian wave packet (σx ¼ 0.25 μm)
centered at the minimum of the branch, so that its
momentum spread encompasses the range k1–k2 [22].
The spacetime evolution of the wave function jψðx; tÞj2
is plotted in Fig. 2(a) and shows a distinct interference
pattern spatially confined in the diffusion cone defined by
d1;2ðtÞ ¼ vðk ¼ k1;2Þt. An enlightening method to visual-
ize the self-interference effect is to plot the wave function
density in the x-k plane by performing the wavelet trans-
form (WT) Wðx;kÞ¼ð1= ffiffiffiffiffijkjp ÞRþ∞

−∞ ψðxÞG�½ðx−x0Þ=k�dx
[23]. Recent studies have shown that the WT can be applied
to analyse complex interacting wave packets dynamics
[4,24]. Unlike the usual Fourier transform based on the
decomposition of the signal into a sum of delocalised

functions (sine and cosine), theWTuses localised wavelets.
Here we choose the Gabor wavelet family, with Gaussian-
like functions G�, and a high central frequency ensuring
good resolution near the inflection points in the dispersion
[25]. Further details regarding the WT for wave packets are
described in the Supplemental Material [19].
Figure 2(c) shows the wavelet energy density jWðx; kÞj2

at t ¼ 35 ms. The inflection point momenta k1;2 are
indicated in k (purple lines), and the boundaries d1;2 of
the diffusion cone in x (blue lines). We also plot the
displacement dðkÞ ¼ vðkÞt associated with each k-wave
vector (red dashed line). From this simple picture, one can
now understand the origin of the self-interference effect:
different wave vectors of the packet travel with the same
velocity, hence overlapping in real space and interfering.
This happens only when the wave packet spreads over an
inflection point of the branch. This phenomenology is a
universal consequence of the shape of the dispersion and
can therefore be equally encountered for exciton-polariton
and atomic condensates, despite their operating timescales
that differ by nine orders of magnitude.
Practically, it is challenging to form a SOCBEC with

such a broad spread in momentum. One way to overcome
this difficulty is to load the packet directly in the inflection

FIG. 2. BEC expansion with the SOC dispersion of Fig. 1(c).
The first column shows the linear case with g ¼ 0 and the second
column the interacting case. (a,b) Spacetime evolution of
jψðx; tÞj2, with a condensate initial size of (a) 0.25 μm and
(b) 5 μm Thomas-Fermi radius, obtained from the ground state of
a 104 particles BEC released from a 100 Hz trap. Insets: density at
t ¼ 35 ms. (c,d) Wavelet decomposition of ψðxÞ at t ¼ 35 ms.
Vertical blue lines: limits of the diffusion cone in x. Purple
horizontal lines: position of the inflection points in k. Red dashed
curve: classical displacement dðkÞ of each k-wave vector. An
animation (video S1) of this figure is provided in the Supple-
mental Material [19].
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points region by imparting it with the appropriate momen-
tum. A second way, used in the experiment of Khamehchi
et al. [18], is to release the BEC from the trap leading to a
broadening of the wave packet in k space due to the
conversion of interaction energy to kinetic energy. This is
an effective way to push some components of the wave
packet into the negative m2 region. Further details of this
approach are presented in the Supplemental Material [19].
Here, we simulate the expansion dynamics of an inter-

acting system initially in a 100 Hz harmonic trap with a
Thomas-Fermi radius of 5 μm corresponding to approx-
imately 104 atoms. This is more tightly confined with fewer
atoms than the experiment of Ref. [18], which had a trap
frequency of 26 Hz, 105 atoms, and a Thomas-Fermi radius
of 23 μm, but enables a direct comparison with the g ¼ 0
case. The results for the spacetime density and WT are
shown in Figs. 2(b) and 2(d). Here, the interference only
becomes visible after a finite time, which is that needed
for the expansion of the wave packet to reach k1. The
presence of self-interference is again confirmed by the WT
analysis in Fig. 2(d). Because of the interactions, the self-
interference pattern differs slightly from the noninteracting
case, and the energy density distribution gets spread
around dðkÞ since this curve accounts for the packet’s
k-components displacement from t ¼ 0. The initial packet
is here 20 times larger, and only the low k region is
significantly populated at t ¼ 0. We provide analysis of the
exact experimental situation of Khamehchi et al. [18] in the
Supplemental Material [19]. Their configuration has a
larger nonlinearity which results in the population of k
components above k2, which travel with a velocity larger
than vðk1Þ. This results in the density “leaking out” of the
diffusion cone (d1) and was previously identified as being
due to dynamical instability [18]. The limited diffusion of
the condensate as shown in Fig. 2(b), which might appear
as a “self-trapping” effect, can be overcome if high enough
momenta (k > k2) are reached, as is the case in Ref. [18].
We now study the SOCBEC dispersion in a more

interesting configuration that exhibits a stronger type of
negative mass effect, shown in Fig. 1(d). This can be
obtained by reducing the Raman coupling Ω and detuning
δ. In this case, the mass m1 is also negative in the
momentum range k3–k4 for which v < 0. Again, we first
consider the noninteracting case (g ¼ 0) but this time
with a Gaussian packet centered on k ¼ k2 with a width
σx ¼ 0.25 μm. As shown in Fig. 3(a), the wave packet
exhibits a double SIP effect during its propagation as the
initial state spreads over both k1 and k2. The most notable
feature is the position of the second SIP, whose diffusion is
limited by d2 ¼ vðk2Þt in the x < 0 region, as k3<k2<k4.
The packet is now composed of two subpackets, each
carrying and propagating a SIP in opposite directions. This
can be seen in the WT in Fig. 3(c), where we have added
the boundaries k3;4 (green lines) delimiting the m1 < 0

region. One can see how the wavelet energy density in the

momentum range k3–k4 is only displayed in the x < 0
region. This corresponds to the packet’s k components
experiencing backward propagation.
The double SIP behavior can also be observed in the

expansion of an interacting BEC. We again begin with the
condensate ground state in a 100 Hz trap with a Thomas-
Fermi radius of 6 μm, corresponding to ≈2.5 × 104 atoms,
leading to the population of higher momenta as compared
to the previous case. As before, the SIP effect is present
within the overall diffusing packet as can be seen in
Fig. 3(b), and in the WT shown in Fig. 3(d), one can
see that the SIP is “delayed” as compared to the non-
interacting case. Time-animated videos of jψðx; tÞj2 with
jWðx; kÞj2 for both the linear and interacting cases as
presented in Figs. 2 and 3 are provided in Ref. [19]. In
experiments, translating optical lattices or Bragg pulses
could be used to impart a momentum to the condensate in
order to more clearly exhibit the SIP effect [17]. Other
nonlinear features like shock waves or soliton trains
observed by Khamehchi et al. [18] may appear a posteriori
as the self-interference process induces large oscillations of
the condensate density and thus provide a breeding ground
for these excitations. In this experiment, both these linear
and nonlinear effects are intertwined and cannot be clearly

FIG. 3. BEC expansion with the SOC dispersion of Fig. 1(d)
with both m1 < 0 and m2 < 0. The first column shows the
noninteracting case with g ¼ 0 and the second column the
interacting case. (a,b) Spacetime evolution of jψðx; tÞj2, with a
condensate initial size of (a) 0.25 μm and (b) 5 μm Thomas-
Fermi radius, obtained from the ground state of a ≈2.5 × 104

particles BEC released from a 100 Hz trap. Insets: density at
t ¼ 35 ms. (c,d) Wavelet decomposition of ψðxÞ at t ¼ 35 ms.
The color code is the same as Figs. 2(c) and 2(d) with additional
horizontal green lines delimiting the m1 < 0 region. An anima-
tion (video S2) of this figure is provided the Supplemental
Material [19].
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separated in the dynamics. The limited diffusion of the
condensate, sometimes described as a nonlinear self-
trapping effect in the literature [26–28], can instead be
viewed in this case as a consequence of peculiar dispersion
relations containing inflection points and regions of neg-
ative effective mass. Although the condensate diffusion is
strongly affected, it is not bounded, and normal diffusion
can still occur as the dispersion returns to being parabolic at
higher momenta.
In conclusion, we have shown that SOCBECs provide an

excellent platform to engineer dispersion relations,
allowing the creation of regions of negative effective mass
for both parameters m1 and m2 that govern wave packet
dynamics. The mass m1 leads to a negative group velocity
for a positive impulse, while the mass m2 leads to self-
interference in the wave packet. Self-interference alone is a
direct consequence of the linear dynamics where dispersion
relations contain inflection points. The nonlinearity of the
BEC can further add to the phenomenology, in particular,
by populating such regions in the momentum space
and allowing self-interference to subsequently lead to the
formation of solitons. The wave packet dynamics for which
both mass parameters are negative is within reach of the
SOCBEC platforms. This would result in the formidable
phenomenology of moving an object in the direction
opposite to which it was pushed.
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