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We propose a twisted plasma accelerator capable of generating relativistic electron vortex beams with
helical current profiles. The angular momentum of these vortex bunches is quantized, dominates their
transverse motion, and results in spiraling particle trajectories around the twisted wakefield. We focus on a
laser wakefield acceleration scenario, driven by a laser beam with a helical spatiotemporal intensity profile,
also known as a light spring. We find that these light springs can rotate as they excite the twisted plasma
wakefield, providing a new mechanism to control the twisted wakefield phase velocity and enhance energy
gain and trapping efficiency beyond planar wakefields.
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Using plasmas to accelerate particles to high energies has
long been identified as a promising path to obtain compact
accelerators [1–3]. In terms of particle energy, the most
advanced scheme to date for electrons consists in using
ultraintense femtosecond lasers or electron beam drivers to
excite high-amplitude ultrarelativistic waves in low-density
plasmas [4–7]. Electrons trapped into these waves can gain
energy and be accelerated to relativistic velocities [8–12].
Currently, longitudinal phase-space properties of the

accelerated bunches, such as their longitudinal momentum,
can be effectively controlled. Despite recent progress to
control the radial dynamics of accelerated beams, using
sophisticated temporal wakefield modulations [13] and
spatial shapes [14,15], it is not yet possible to control
the angular momentum degrees of freedom (d.o.f.) in
plasma accelerators. Accessing them is, however, interest-
ing from a fundamental perspective and important for
applications, such as radiation generation, which often rely
on transverse beam phase space features.
Here, using theory and particle-in-cell (PIC) simulations,

we propose to control the angular momentum d.o.f. of
relativistic beams by introducing the concept of helical-
beam plasma wakefield accelerators. The helical-beam
wakefield accelerator relies on plasma wakefields with
orbital angular momentum (OAM). We show that twisted
wakefields can generate and accelerate relativistic vortex
beams, which, unexpectedly, carry quantized levels of
angular momentum. The twisted wakefields could be
excited by laser pulses or particle beams with helical
profiles. Here, we focus on the laser wakefield accelerator
scenario, excited by spatiotemporally shaped femtosecond
laser beams called light springs [16] (LS). Light springs
have a helical intensity profile, carry OAM, and can
effectively transfer angular momentum to the plasma wave.
We demonstrate that the LS rotates as it propagates through
the plasma, providing an all-optical mechanism to control

the wakefield phase velocity, prolong dephasing, and
enhance the energy gain in comparison to a planar
wakefield.
A pure Laguerre-Gaussian (LG) laser beam with OAM

[17] cannot transfer its OAM to a plasma wakefield because
the mechanism underlying wakefield excitation is stimu-
lated Raman scattering [18]: since the absorbed and emitted
photons each carry the same OAM l0ℏ, there is no net
transfer of OAM to the excited medium [Figs. 1(a) and
1(b)]. Such a transfer becomes possible when the OAM
per photon in the laser driver is frequency dependent
[Fig. 1(c)]: this corresponds to a spatiospectrally coupled
laser beam, where each frequency is associated to a spatial
LG mode with a different azimuthal index, l ¼ lðωÞ.

(a) (c)

(d)(b)

FIG. 1. Pulsed LG beams (a)–(b) versus light springs (c)–(d).
The upper graphs show the frequency dependence of the
azimuthal mode index l in the two cases. The lower graphs
display the corresponding spatiotemporal intensity profiles of the
pulses.

PHYSICAL REVIEW LETTERS 121, 054801 (2018)

0031-9007=18=121(5)=054801(6) 054801-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.054801&domain=pdf&date_stamp=2018-07-30
https://doi.org/10.1103/PhysRevLett.121.054801
https://doi.org/10.1103/PhysRevLett.121.054801
https://doi.org/10.1103/PhysRevLett.121.054801
https://doi.org/10.1103/PhysRevLett.121.054801


When lðωÞ is linear, such a superposition of modes forms a
LS [Fig. 1(d)] [16].
Efficient OAM transfer from the driver to the plasma

wake requires that the OAM difference (Δl) between two
photons separated by the plasma frequency ωp, given by
Δl ¼ lðωþ ωpÞ − lðωÞ ¼ dl=dω × ωp, is an integer,
which then corresponds to the OAM, lp ∈ Z, acquired
by the wakefield. This condition fixes the slope l0 ¼
dl=dω of lðωÞ to l0 ¼ lp=ωp. In the time domain, the
physical meaning of this condition is that the temporal pitch
τh of the LS intensity helix, given by τh ¼ 2πjl0j [16],
needs to be an integer multiple of the plasma wave temporal
period τp ¼ 2π=ωp, to ensure that the plasma wave excited
by the final edge of the LS is in phase with the one
previously excited by its starting edge.
Figure 2(a) shows the results of three-dimensional PIC

simulations performed with OSIRIS [19,20], illustrating a
twisted plasma wave driven by a LS in these resonant
conditions, with lp ¼ 1. The simulation considers a
preformed parabolic plasma channel to ensure stable
propagation. The laser driver incorporates two different
LG modes, with OAM levels differing by Δl ¼ 1 and
frequencies (wave numbers) by Δω ¼ ωp (Δk ¼ kp), such
that l0 ¼ 1=ωp. The peak normalized vector potential of
each mode is a0 ¼ 0.75 (a0 relates to the peak laser

intensity through a0 ¼ 8.6 × 10−10λ½μm�I1=2½W=cm2�). In
addition a moving window with dimensions 36 × 40 ×
40ðc=ωpÞ3 and 2700 × 200 × 200 cells was used. Each cell
contains 10 particles (see Supplemental Material [21] for
additional details). Because Δω ¼ ωp (Δk ¼ kp) and
Δl ¼ 1, this LS [green-yellow-red colors in Fig. 2(a)] is
expected to excite a twisted wakefield with lp ¼ 1. This
agrees with the simulation, for instance, by considering the
wake longitudinal electric field [blue and red surfaces in
Fig. 2(a)]. More generally, simulations show that when l0 is
gradually increased, field structures with lp helical strands
appear in the plasma when the resonance condition l0 ¼
lp=ωp is fulfilled.
The field structure of a twisted wakefield, similar to that

shown in Fig. 2(a), can be captured analytically by a wake
potential of the form ϕ ¼ ϕ0ðrÞ cosðkpξþ lpθÞ, where
ϕ0ðrÞ is the amplitude, r is the distance to the axis, ξ ¼
x − vϕt is the comoving frame variable with vϕ ≃ c being
the wake phase velocity and θ the azimutal angle. The wake
longitudinal electric field is then Ex ¼ −∂ϕ=∂ξ ¼
kpϕ0ðrÞ sinðkpξþ lpθÞ. The OAM of the wake potential
and electric fields thus coincide. Figure 2(a) and the
analytical expression for Ex also show that a closed path
along the θ direction (for a fixed ξ) crosses positive and
negative field regions. This contrasts with a non-OAM
wakefield where positive and negative fields can only be
accessed by following a path along ξ. This feature results
from the modified topology of the plasma wave: while
areas of constant field sign consist of a succession of totally
disjoint “bubbles” in the wakefields created by standard
Gaussian beams, here these areas form a set of intertwined
helices, with a single continuous helix for each field value
[Fig. 2(a)].
In contrast to planar wakefields, where the wave vector is

constant and given by kpex, the twisted plasmawavevector is
angle dependent, and given by kpex þ lp=reθ (ex and eθ are
the unit vectors along x and θ, respectively). This allows
exploring new acceleration regimes and generate new types
of particle bunches. To investigate the new d.o.f. that now
becomeavailable,we consider thePanofsky-Wenzel theorem
[22], ∇⊥Ex¼∂W⊥=∂ξ, with W⊥¼E⊥þcex×B⊥, which
relates the longitudinal and transversewakefield components
acting on a relativistic particle moving at c. Here,E⊥ andB⊥
are the transverse electric and magnetic wakefields, respec-
tively. In addition to the radial focusing force, which appears
since Ex depends on r [Fig. 2(b)], the Panofsky-Wenzel
theorem predicts a new azimuthal field component
[Fig. 2(c)], given by ð1=rÞ∂Ex=∂θ ¼ ∂ðEθ þ BrÞ=∂ξ, given
by Eθ þ Br ¼ ϕ0ðrÞðlp=rÞ sinðkpξþ lpθÞ. The new azi-
muthal wakefield component is a remarkable feature of
twisted plasma waves, which strongly affects the dynamics
of background plasma electrons and the dynamics of
relativistic trapped particles.
The existence of a finite azimuthal wakefield, which is a

result of the twisted wakefield topology, has far reaching
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FIG. 2. Twisted plasma wakefields driven by a light spring
moving in a preformed plasma doped with nitrogen. (a) (right)
Rainbow colors display the electric field of the light spring. (left)
Blue-red isosurfaces show the twisted longitudinal electric field
structure of the wake excited by this LS in the underdense plasma.
These surfaces are not displayed for x ≥ 178 to avoid hiding the
other plots. (middle) Spheres in rainbow colors correspond to
ionization injected electrons from the inner (6th-7th) shells of
nitrogen. (b)–(c) Slices of the corresponding radial and azimuthal
electric fields in the plasma. Field values are normalized to the
cold wave breaking limit E0 ¼ mecωp=e.
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consequences for the plasma dynamics and acceleration.
Unlike planar wakefields, the longitudinal and azimuthal
trajectories of the bunch particles are no longer indepen-
dent. Their relation can be determined using Hamilton’s
equations. In an electrostatic wakefield, the canonical
momentum along x (Px) and θ (Pθ) correspond to the
longitudinal (linear) momentum (px) and angular momen-
tum (Lx), given by Px ¼ px ¼ mecγβx and Pθ ¼ Lx ¼
rpθ ¼ mecrγβθ, respectively. In these expressions, βx and
βθ are the longitudinal and azimuthal velocity components
normalized to c. Hamilton’s equations then read dtpx ¼
−∂xH and dtLx ¼ −∂θH, where H ¼ mec2γ þ eϕðr; θ; ξÞ
is the Hamiltonian of a particle with charge e and
relativistic factor γ. Supplementing these equations with
dtH ¼ ∂tH then leads to

ΔLx

Δpx
¼ lp

kp
: ð1Þ

Equation (1) is a key result of the work. By establishing a
proportionality relation between the angular and longi-
tudinal momentum of the accelerated particles, Eq. (1) not
only affects the dynamics of background plasma electrons,
but has profound consequences on the dynamics of
relativistic trapped particles, which are evident in the
simulations. This proportionality relation is imposed by
the wakefield topology. To clearly isolate the trapped
particles, the simulation of Fig. 2 considers a small
concentration of nitrogen, which allows for the occurrence
of ionization injection from the inner 6th–7th atomic shells
of the nitrogen. A helical particle bunch [rainbow colored
spheres in Fig. 2(a)], with a single helical strand, then forms
and accelerates to relativistic energies.
According to Eq. (1), for a given Δpx, the angular

momentum ΔLx can only vary in jumps, multiples of lp at
a fixed plasma density. Figure 3(a) shows the bunch particle
distribution in the pθ − px phase space, obtained from
numerical simulation performed with different values of
Δl ¼ lp. The slope of these particle distribution varies in
discrete steps that indeed follow the theoretical prediction,
given by pθ=px ¼ lp=ðkprÞ. Here, r ≃ r0 ¼ w0

ffiffiffiffiffiffiffiffiffiffiffiffiffijl0j=2
p

is
the radius where the LS intensity is maximum, with l0 ¼
hlðωÞi the frequency-averaged value of l. The azimuthal
particle motion then dominates the transverse particle
dynamics because pθ ≫ pr. Twisted wakefields can also
be exploited to generate beams characterized by compa-
rable longitudinal and transverse momenta (px ∼ pθ) when
lp ≃ r0kp. Figure 3(a) (green region) illustrates this regime
when lp ¼ 4, for which pθ ≃ px=2.
A remarkable consequence that follows from the quan-

tization of the angular momentum expressed by Eq. (1) is
that βθ of trapped particles can only take a discrete set of
values. The emergence of this unusual quantization rule can
be directly linked to the twisted wakefield topology. In the
limit where βx ¼ vx=c ≃ 1 and the particle was initially at

rest, βθ ≃ pθ=px ¼ lp=ðkpr0Þ. Thus, βθ is quantized
because it can only change by a multiple of 1=ðkpr0Þ, as
lp varies. The well-defined slopes of the phase-space
regions in Fig. 3(a) already reflect this quantization rule.
Figures 3(b) and 3(c) further confirm that trapped electrons
perform helical trajectories with a period that agrees with
theory. Figure 3(b) shows the trajectories of a random
sample of trapped nitrogen electrons in the transverse y-z
plane for a twisted wakefield with lp ¼ 1. Figure 3(c)
shows that the spiralling period is Tsωp ≃ 320, close to the
theoretical estimate, given by Tsωp ¼ 2πk2pr20=lp, which
yields Tsωp ≃ 353.
Although purely classical, this quantization rule for βθ is

analogous to the OAM quantization of twisted rays of light
as well as quantum vortex electron wave packets. To
establish a parallel with twisted light, we consider the
paraxial approximation, where p⊥ ≪ px, so that the energy
(Ep) of a relativistic particle is Ep ≃ cpx ≃ γmec2. Hence,
Eq. (1) leads to Lx=Ep ≃ lp=ωp. The latter expression is
analogous to the quantization of the ratio of angular
momentum flux to energy flux for a LG beam [17], given
by Mz ¼ l=ω. It also recovers the OAM quantization of
vortex free electron quantum wave packet, given by
Lx=px ¼ l=kx, where kx is the wave packet wave number
[23]. These similarities suggest that trapped particles may
be seen as a matter analogue of an OAM light beam and a
classical matter analogue of a quantum electron wave
packet.
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FIG. 3. Properties of relativistic vortex beams accelerated by
twisted plasma waves. (a) pθ − px phase space of vortex electron
bunches in plasma waves with different OAM levels. The dashed
lines show the prediction of Eq. (1) in each case. Note the
negligible azimuthal momentum of trapped particles in the case
where Δl ¼ 0 (gray distribution). (b) Helical trajectories of a
random sample of ionization injected nitrogen electrons forming
a vortex beam with lp ¼ 1. The trajectories are colored accord-
ing to the propagation time. (c) Trajectories of two electrons
[shown in blue and red in (b)] along the propagation time. (d)–(e)
Three-dimensional vortex particle bunches colored according to
the energy.
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Figure 3(d), which illustrates the density distribution of
the beam with lp ¼ 2 [blue region in Fig. 3(a)] and
Fig. 3(e) with lp ¼ 4 [green region in Fig. 3(a)], shows
the correspondence between the spatial and velocity dis-
tribution of the relativistic bunches: the number of helixes,
given by lp, is proportional to the angular momentum,
given by the quantization rule pθ=px ¼ lp=ðkprÞ, thus
demonstrating that these beams constitute a new type of
charged particle beams with a vortex spatial structure and
with quantized levels of angular momentum.
A general feature of the acceleration in a twisted wake is

that particles can also dephase along eθ, thereby potentially
lowering the dephasing length and energy gain in com-
parison to a planar wakefield. Figure 3(a) confirms this
prediction, showing that the energy gain decreases for
larger Δl. This effect can be mitigated due to a new and
intrinsic property of twisted wakefields: as a LS propagates
in the plasma, its intensity helix rotates azimuthally. This
rotation enables us to adjust the wakefield phase velocity all
optically. Remarkably, in some cases, the acceleration can
even become stronger than in a planar wakefield.
While signatures for this rotation can be observed in a

uniform plasma in the presence of self-guiding induced by
the nonlinear plasma response, this effect becomes par-
ticularly clear, and its derivation simpler, in the presence of
a preformed parabolic plasma channel, in the linear
propagation regime. Figure 4(a) illustrates this azimuthal

rotation of the LS intensity helix, as it propagates in such a
preformed plasma channel (see Supplemental Material [21]
for the simulation details).
The channel counteracts diffraction by preventing the

wave fronts to curve outwards. The angular momentum of a
twisted light ray is preserved in the channel, causing the LS
intensity profile to spin around its axis, in a direction
determined by the helicity of the wave fronts, i.e., by the
sign of l0. Just as in a rotating screw, the laser pulse at a
given radial position appears to move either backward or
forward in the frame of the laser, depending whether this
ray rotation is opposite to, or along the LS intensity helix,
which direction is determined by the sign of l0 ¼ dl=dω.
Thus, when looking at a given longitudinal plane (along x
for fixed y or z), the laser pulse envelope will appear to
move either slower or faster than the linear group velocity
in the plasma, depending on the relative sign of l0 and l0.
The resulting effective group velocity can be determined

analytically (see Supplemental Material [21] for an explicit
derivation),

vg;LS ¼ vg þ
2c2

kw2
0

l0sgnðl0Þ; ð2Þ

where vg is the usual group velocity in the plasma.
The plasma responds to this effective local group

velocity of the LS. Hence, the correction term resulting
from the rotation of the LS can be exploited to increase or
decrease the wakefield phase velocity. Figures 4(b) and 4(c)
show the evolution of the wakefields as a function of
propagation distance when l0 > 0 [Fig. 4(b)] and l0 < 0
[Fig. 4(c)], for a fixed l0 > 0, and confirm this prediction.
This effect vanishes when l0 ¼ 0, and is thus an unique
feature of twisted wakefields driven by the LS.
Since the energy gain of a group of externally injected

particles depends on the wake phase velocity, this effect
should modify the spectra of particles accelerated by
twisted wakefields. This is illustrated on Fig. 4(d): the
accelerated bunch reaches higher energies when l0 and l0

have the same sign (orange region), than when they are of
opposite signs (blue region). For these parameters (i.e.,
keeping laser energy constant in all cases), Fig. 4(d) also
demonstrates that the maximum energy and number of
accelerated particles in the twisted wakefield (red solid
line) exceeds those produced in a planar wakefield excited
by a standard LG beam of same l0 (black dashed line).
Most physical schemes studied so far to transfer angular

momentum from lasers to plasmas have relied on circu-
larly-polarized light, i.e., on the spin angular momentum of
light [24–30], leading to strong magnetic fields, intense
radiation bursts, and helical beam-plasma structures in
dense plasmas exposed to superintense laser fields in the
context of radiation pressure dominant acceleration [30]. In
contrast, our work describes a new configuration where it is
now the orbital angular momentum of a laser field that is
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FIG. 4. Effects of the LS azimuthal rotation. (a) Spatiotemporal
intensity profile of a LS propagating in a plasma channel, at
different times in the propagation. (b)–(c) Evolution of the
accelerating fields at y ≃ 9c=ωp and z ¼ 0, corresponding to
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fixed l0 > 0. The theoretical predictions of Eq. (2) are shown as
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OAM levels. The theoretical predictions of Eq. (1) are given by
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transferred to an underdense plasma. This enables control
of the wakefield topology, which can then be exploited to
generate relativistic beams with unprecedented properties,
beyond current possibilities, thereby significantly expand-
ing the potential of plasma based acceleration. This
configuration can have broad implications in different
fields [14,31–38], from the generation of twisted x-rays
and intense magnetic field generation in plasmas [39,40] to
novel pathways to control laser-matter interactions, and
perhaps manipulate the spin in compact plasma based spin-
polarisers (e.g., due to the Sokolov-Ternov effect [41] or
spin precession [42]). The required spatiotemporally
shaped ultrashort laser beams can in principle already be
obtained experimentally with simple helical mirrors such as
those presented in Ref. [43]. Looking further ahead,
advances in ultrafast optical metrology [44] and shaping
[45] should soon provide access to advanced and program-
mable spatiotemporal control of ultrashort laser beams, and
thus make it possible to tailor the topology of laser-plasma
accelerators and hence access new intrinsic d.o.f. of the
resulting high-energy particle beams.
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