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Design for a Nanoscale Single-Photon Spin Splitter
for Modes with Orbital Angular Momentum
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We propose using the effective spin-orbit coupling of light in Bragg-modulated cylindrical waveguides
for the efficient separation of spin-up and spin-down photons emitted by a single photon emitter. Because
of the spin and directional dependence of photonic stop bands in the waveguides, spin-up (-down) photon
propagation in the negative (positive) direction along the waveguide axis is blocked while the same photon
freely propagates in the opposite direction. Frequency shifts of photonic band structures induced by the
spin-orbit coupling are verified by finite-difference time-domain numerical simulations.
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Introduction.—The development of nanophotonic devices
brings an emergent research field of chiral quantum optics
(CQO) [1] in microscopic waveguides. When light is
confined strongly in the transverse direction, its electromag-
netic field oscillates along both transverse and longitudinal
directions, resulting in a rotating electric field oriented
perpendicular to its propagation direction and forming
the transverse spin [2—4]. The transverse spin is locked to
the momentum, because its component flips sign with the
inversion of the propagation direction. When an emitter is
embedded inside the waveguide, the light absorption and
emission depend on the local distribution of the momentum-
locked transverse spin, resulting in the CQO [5,6].

The transverse spin is an exemplification of a more
general concept of spin-orbit coupling (SOC) of light,
which arises due to the vectorial nature of the light field
encountering wavelength-scale structures [7]. Besides the
transverse spin, the SOC of light results in phenomena such
as the spin-Hall effect of light [8—14] and spin-to-orbital
angular momentum conversion [15-17]. Currently, many
CQO designs rely heavily on chiral atom coupling
[6,18,19], making them hard to implement in integrated
optical circuits [20]. To circumvent this constraint, here we
realize a CQO design serving as a fully optical single-
photon spin splitter by exploiting the SOC of light in
cylindrical waveguides [21-23] without introducing any
light-matter interaction. To achieve this, we need to
combine effects from the SOC of light and the band gap
structure of a photonic crystal.

When light is passing through a periodically modulated
dielectric structure, the electric field tends to concentrate
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around the high refractive index regions [24], and a finite
amount of energy would be required to change the electric
field to the reverse distribution. Therefore, for a certain
range of frequency there will be no propagating mode,
i.e., the appearance of a photonic band gap [24]. Recent
developments in fabrication have allowed embedding an
ultralong Bragg modulation (up to 1 m) in a waveguide
[25]. Hence, a question will arise as to how the photonic
band gap structure under the influence of transverse
confinement is modified by the SOC of light. In this
Letter, we will try to answer this question by analyzing the
SOC in the presence of a weak Bragg modulation in a
cylindrical waveguide. We present a systematic method in
dealing with transversely confined periodic structures by
making clear the distinction between the Floquet exponent
(i.e., the Bloch wave vector) [26,27] and the variable
separation constant [28], clarifying some misunderstand-
ings found in the literature [29,30]. The SOC will lead to
splitting of the propagation constants between o, and o_
components in the helicity basis [21-23]. As a result, the
photonic band gap will split accordingly and lead to spin-
locked propagation modes protected by the photonic band
gap structure, forming the foundation of our design of a
single-photon spin splitter.

We will first introduce a general scheme for the
dispersion calculation of Bragg mirrors under the influence
of transverse confinements and, after that, the effect of SOC
correction on the dispersion and band gap structures.

Floguet theory and dispersion relation.—Let us consider
an infinite cylindrical waveguide with weak Bragg grating
along the z direction [Figs. 1(a) and 1(b)]. In experiments,
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FIG. 1. TIllustrations of dielectric constant modulations in
cylindrical waveguides. (a) A cylindrical waveguide with a
homogeneous dielectric constant along the z direction. (b) A
cylindrical waveguide with weak Bragg grating along the z
direction. The SOC effect results in spin-and-direction-locked
propagation for two polarization components s, in laboratory
coordinates. (c) A single photon emitter is sandwiched between
two Bragg gratings, serving as the fully optical single-photon
spin splitter. (d) Dispersion relation for the TE or TM mode when
the radius a of configuration (b) becomes infinite, retrieving the
dispersion of a 1D photonic crystal slab. Parameters: ¢; = 1.12,
& =0.5, =42 um™", and wz = ¢ff = 1.261 x 10> THz.

a fiber Bragg grating can be fabricated by using two-
beam interferometry [31,32], where the resulting dielectric
constant modulation is sinusoidal. Additionally, it has been
found in a recent measurement of a nanowire distributed
Bragg reflector that the position of its stop band depends
more sensitively on the periodicity than the depth or width
of the grating [33]. Therefore, by considering only the
dominant spatial frequency component of a Bragg grating,
its relative permittivity can be approximated as

e(r.2) = 1+ H(a=r)ley - ercos(262)]. (1)

where H(r) is the Heaviside step function, a is the
waveguide radius, f represents the spatial frequency of
the Bragg grating, ¢, and &, are two positive constants with
& < 1, and r, ¢, and z are cylindrical coordinate variables.

In what follows, we shall calculate eigenmodes of the
waveguide for &,(r, z). By setting the time dependence of
the electric field E = (E,, E,. E,) as e”™', E satisfies a
vector Helmholtz equation [34]. In cylindrical coordinates,
the vector Laplacian operator can be separated into trans-
verse and longitudinal components (see Supplemental
Material [35]); and, specifically, the z component of the
electric field E, fulfills the equation

2 ?
V°E, + ?.«;“r(r,z)EZ =0, (2)

where c¢ is the speed of light and the relative permeability
u, =1 1is assumed. Separating the coordinate variable

dependency as E,(r,¢.z) = R(r)®(¢)Z(z), for r <a,
we have

rPdR rdR 140 rd°z
RdP "Rdr ©d?  Zd?
w2
+ r2? [1+ & — e, cos(2pz)] = 0. (3)

The solution for ©(¢) satisfies (1/@)[(d*®)/(d¢*)] =
—m?, with m the quantum number of the angular momen-
tum operator [, = —id,; [22]. The Z(z) function satisfies

1 d’Z o
)

251—22 — ?82 COS(ZﬂZ) - _kZ' (4)

k. is a variable separation constant that does not depend

on any coordinate variables. Equation (4) is the Mathieu

equation [47], which has a general solution

Z(z) = A\C(8a s P2) + A2S($0n E 4y B)s (5)

where C(c_,“a,éq,ﬂz) and S(¢,, é’q,ﬁz) are the Mathieu
cosine and sine functions, respectively, £, = k2/p%, {, =
e,w*/(2¢*B%), and A, , are constants.

Now we are ready to obtain the general solution of E,.
By inserting Eq. (4) into Eq. (3), the R(r) function satisfies
the Bessel equation and can be written as R(r) ~ J,,(yr),
where J,, is the Bessel function of the first kind and
7P =w*(1+¢)/c* = k%, for r < a. A similar procedure
can be done for r > a, with R(r) ~ K,,(7r), and K,,, is the
modified Bessel function of the second kind and
7= k% —w?/c%.

Having known the expression of E_, we can insert it into
the Maxwell equations to calculate the transverse compo-
nent E, and E4 [34]. Since the amplitude of the Bragg
modulation &, is assumed to be weak, as a zeroth-order
approximation &, — 0, i.e., a homogeneous waveguide,
Eq. (4) reduces to (1/Z)[(d*Z)/(dz*)] = —k? whose sol-
ution is Z(z) = e, giving the usual homogeneous
waveguide result. In this case, we obtain the well-known
HE-EH mode k, ~ @ dispersion relation [34,48]:

( Julra)  K(7a) )(ﬂ?ﬂn(ya) H%Kin(%l))

valy,(ya) = yak,(ya)) \ral,(va) 7yak,(va)
m2k2c? 1 1 \?
= ; ( 72t 2) ’ (6)
W ya*  ja

where n; = /1 + &, and n, = 1 are the refractive indices
inside and outside the waveguide, respectively.

In the homogeneous case, k, bears two roles simulta-
neously: first, as a variable separation constant and, second,
as the Floquet exponent. Once the Bragg modulation is
introduced, the degeneracy of those two roles breaks down
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so that k, is no longer a good quantum number representing
correctly the momentum of the light field. Hence, the
k, ~ o relation is not the proper dispersion relation for
&, > 0. In order to calculate the correct dispersion relation,
we need to apply the Floquet theory explicitly.
According to Floquet’s theorem, the solutions of the
Mathieu equation Eq. (5) can be written in the form [47]

2(z) = e™if(pz) and k= k(k,, @), (7)

where & is the Mathieu characteristic exponent and f(fz) is
a periodic function with the period z [27]. In the form of
Eq. (7), we can see that the correct momentum quantum
number is k rather than k., and the k ~ w relation is the true
dispersion relation for the Bragg modulation.

Therefore, we need to eliminate the intermediate param-
eter k, in order to obtain the k ~ @ dispersion. As an
example, let us consider the case @ — co where the system
reduces to a 1D photonic crystal (with planar slabs). For the
TE or TM mode, the k, ~ @ relation is given by k, =
w+/1 + €, /c [24], which is a linear relation and does not
contain any discontinuity. Meanwhile, by using Eq. (7), &,
can be inversely expressed as k, = g(k, ), where g(k, )
is an analytic function defined by series expansions [49].
By matching two expressions of k,, we have

N (8)

This is an implicit expression of the desirable k ~
dispersion relation. Figure 1(d) shows the numerically
calculated dispersion curve by using Eq. (8). This semi-
analytical result matches nicely the existing results
obtained from full numerical calculations in the photonic
crystal literature [24].

Now we consider Bragg modulations inside a waveguide
with a finite radius a. For a given waveguide mode with
orbital angular momentum m and a given order of the
solution, e.g., LP,; [23,50], to obtain its k~w dispersion
relation, the calculation procedure would be similar: First
we calculate its k, ~ @ relation by using Eq. (6) [48,50] and
then eliminate the k, dependency by using Eq. (8). Besides
the existence of a cutoff frequency for certain modes [34],
the resulting dispersion curve will possess the band gap
structure introduced by the Bragg modulation. Note that the
transversely confined periodic structure can support bound
states in the continuum [51]; however, since those modes
lie above the light line, they are outside the scope of our
consideration.

SOC corrections.—Next, we consider the effect of the
SOC on the band gap. Here we consider only fiber modes
with paraxial light where its spin and the intrinsic orbital
angular momentum are separable [23,52]. In this case, the
angular momentum is parallel to the propagation direction

and is represented by the operator 72 = —id, whose eigen-
value is m. Recent experiments [23] have demonstrated that,

for a homogeneous cylindrical waveguide, the transverse
confinement will result in a SOC correction term for the
transverse electric field E,, leading to a splitting of the values
of propagation constants between two spin components
being parallel and antiparallel against the orbital angular
momentum [22]. The effective Hamiltonian can be written
as [22,23]

w’e,(r)

{V% +t

:|Et + I:ISOEt = k%E,, (9)

where V? is the transverse Laplacian, Ay is the effective
SOC perturbation [22],

N 8(r—a)A (1 a, s
Hso:4kaz<aar—rszlz)a (10)
z

where A = (&, + 1) — 1 is the dielectric jump on the wave-
guide boundary and $, and I, are the spin and orbital angular
momentum operators, respectively. They are both defined
against the z axis of the laboratory frame.

One can see that Eq. (9) be seen as E, satisfying a vector
Helmholtz equation with eigenvalues k,, while Hgq is
added as a perturbation. The perturbation against the
eigenvalue can be conveniently calculated in the helicity
basis &,=[(&,+ié,)/v2]5,. +[(e,—ié,)/V2]5,_ [22],
where ¢ = =+ represents the right- and left-handedness of a
photon’s helicity and €,, are the basis vectors of the
Cartesian coordinate system. Redefining m (assuming
m > 1) as the angular momentum quantum number in
the helicity basis, then up to the first order, perturbations to
k, can be obtained by calculating the expectation value of
Hgo by using the unperturbed waveguide modes, resulting
in the expression [Eq. (19b) in Ref. [22]]

A

0
W/ﬁ(r—a)E(,(ra—am)EGdr. (11)

The corrected eigenvalues k? = k? + 6kZ (where k? is the
unperturbed eigenvalue) signify a splitting between the o
and o_ components, which has been observed in experi-
ments as the rotation of the spatial intensity pattern given
by the interference of two beams with opposite orbital
angular momentum [22,23]. Figure 2(a) shows the depend-
ence of the SOC correction 6k on @ for the LP,; mode
away from the cutoff frequency, where the absolute value
of 5k? is about 0.1% of the original eigenvalue k.

Now we combine the SOC correction Eq. (11) with
the Bragg modulation. The splitting in k, gives rise to the
splitting of the Floquet characteristic exponent k. If the
zeroth-order kY ~ w relation of the LP,; mode is denoted
as kY = h,;(w), then, according to Eq. (7), the shifted
dispersion is given by

5k =

hyi () + 6k (k2. m) = g(k, w). (12)
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FIG. 2. (a) Frequency-dependent SOC corrections to k, for o
components. (b) SOC-corrected dispersion curves. (c) Enlarged
plot showing the shifted band gap between o, and o_. Parameters
are the same as in Fig. 1 witha =5 ym, &, = 0.2, m = 3 (in the
cylindrical basis), and A = 1.12. Calculations are done in the
helicity basis. Splitting strength in (b) and (c) is magnified by a
factor of 100 for visualization purposes.

Therefore, the photonic band gap will be shifted corre-
spondingly. Figures 2(b) and 2(c) show the calculated split
band gap structure. Represented by the gray area, the gap
shift is about 3 x 1073@/wpg, which is about 0.04 THz. In
full numerical simulations, the eigenmodes of the corre-
sponding orbital angular momentum and spin states can be
constructed by superposing the degenerate HE;; mode and
EH;; mode, and the observed splitting on the band gap
edge is about 0.16 THz (see Supplemental Material [35]).
Whereas the semianalytical calculation underestimates
the SOC splitting value, the simulations are based on
solving the SOC-corrected Hamiltonian exactly by the
spectral method, which can be compared with experimental
measurements.

The split band gap between helicity ¢, and ¢_ leads to a
single propagation channel within a certain range of fre-
quency. For example, as is illustrated in Fig. 1(b), when a
Laguerre-Gauss beam couples to the waveguide and gen-
erates the targeted waveguide mode [23], in the shaded
frequency area in Fig. 2(c), only o, can propagate, while ¢_
will be reflected. When we transfer back to the laboratory
basis and observe the spin (denoted by s.), since the spin
flips upon reflection by the gap, the final result is the spin-
direction-locked propagation [Fig. 1(b)] similar to that of
CQO configurations. But it does not require any atom
coupling to achieve a chiral response. Furthermore, our
proposed scheme can serve as an alternative independent
verification of the SOC effect of light instead of relying on
the interference technique adopted by Ref. [23].

To achieve the single-photon spin splitter, a single-
photon emitter or coupler [53-56] can be placed in the
middle of the waveguide [Fig. 1(c)]. It has been reported in
a previous experiment [55] that a single-photon emitter
comprising excitons that are spatially localized by defects
can achieve a very narrow linewidth (=130 peV), which
can provide access to the split frequency gap windows in

Fig. 2. In experiments, detectors on each side of the
waveguide shall receive spin-locked signals. Compared
to macroscopic polarizing filters, the merit of our structure
is that it is based on the intrinsic SOC and can work in the
nanoscale which is a crucial prerequisite in the field of
integrated photonics. Also, our 1D structure can achieve
precise positioning of the emitters, which is quite difficult
for 2D photonic crystal waveguides [57,58].
Furthermore, the single-photon emitter can be placed
between two blocks of Bragg modulations with slightly
different spatial modulation frequency or amplitude, as
illustrated in Fig. 3(a). In this case, the band gaps for +k
and —k will be different (calculated in the helicity basis).
Figure 3(c) shows an example calculation for the lower side
of a band gap, where curves with darker colors are for the
left block (toward —k) and curves with lighter colors are for
the right block (toward +k). In both blocks, o, are split by
the SOC effect so that there are four shifted band gaps to
consider. A simplified illustration is shown in Fig. 3(b),
where the lower boundary of a band gap is shown by solid
or dashed lines, and the shaded areas are the corresponding
dielectric bands where light can propagate through [24].
Figure 3(a) shows the effect when light is emitted within
the frequency region I listed in Fig. 3(b). In this frequency
range, only 6_ can propagate toward the —k direction. Seen
in the laboratory basis, only the s, can be detected on the
left side of the waveguide, while other polarization com-
ponents will be trapped within the effective microcavity
formed by two blocks of Bragg modulations. Similarly, in
frequency region II in Fig. 3(b), only s, propagating
toward the positive z direction will be blocked, while
all other polarization components can propagate freely.
This asymmetric single-channel photon emission or block-
age design can be implemented in quantum computation,
spectroscopy, or metrology, where directional emission of

0.6893

1 I———— — 0.6892}
1T |
TP =2
oesotb L
= > 0.996 0.998 1.000
-k +k k
FIG. 3. (a) An illustration of a single photon emitter or coupler

embedded in the middle two Bragg modulation sections with
difference spatial frequency. (b) An illustration of the lower
boundary of the split band gap. The shaded areas are the
corresponding dielectric bands. (c) The calculated lower boundary
of a band gap for the LP,; mode. Parameters are the same in Fig. 2
with wg, = wg, i = f, wpr = 0.99999wp,, and ff, = wg,/c. No
magnification of splitting is included.
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photons is vital [59,60]. Figure 3 serves as a noise tolerance
estimation for the spatial frequency difference between
two Bragg modulated blocks in forming a 1D microcavity
pillar [61], within which a combined spin-selective trapping
effect will arise. Otherwise, the SOC-induced splitting of
those blocks can be treated as independent from each other.

In summary, we proposed a fully optical design for a
single-photon spin splitter based on the SOC of light
originating from the transverse confinement of a cylindrical
waveguide. The SOC leads to a splitting between the
propagation constant k, between the helicity ¢, and o_
components. When a Bragg modulation of the dielectric
constant is included, one needs to eliminate k, to obtain the
genuine k ~ @ dispersion relation, where k is the Floquet
exponent. The SOC splitting in k, results in splitting in the
dispersion and the splitting of the photonic band gap
between two helicity components. When viewed in the
laboratory basis, the split band gap provides a spin-locked
propagation channel for two polarization states s, or s_,
forming the single-photon spin splitter.

The calculation procedure can be used to investigate
a PT symmetric dielectric distribution &, cos(2fz) +
ie; sin(2f3z). In this case, the Z(z) function in Eq. (4)
allows analytic solutions; hence, its k ~ @ dispersion can be
calculated explicitly (see Supplemental Material [35]). By
studying its Floquet exponents, we might obtain insight
into the spectral singularities [62,63] and the resulting
unidirectional invisibility [64].

G. L. acknowledges the EPSRC Program on Hybrid
Polaritonics for financial support and thanks Dr. Ben
Hopkins for useful discussions. A.V.K. acknowledges
the financial support from the Russian Foundation for
Basic Research (RFBR Project No. 15-52-12018) and
Deutsche Forschungsgemeinschaft (DFG) in the frame-
work of International Collaborative Research Center TRR
160 and Saint-Petersburg State University for a research
grant No. 11.34.2.2012. The work was carried out with
financial support from the Ministry of Education and
Science of the Russian Federation in the framework of
increase Competitiveness Program of National University
of Science and Technology MISiS (NUST MISIS), imple-
mented by a governmental decree, No.211. R. G. and T. C.
H.L. were supported by the Singaporean Ministry of
Education (Grant No. MOE2015-T2-1-055). R. G. thanks
Professor C. C. Leary for helpful discussions.

*Guangyao.Li@monash.edu
'G.L., A.S.S., and R. G. contributed equally to this work.
[1] P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel,
P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, Chiral
quantum optics, Nature (London) 541, 473 (2017).
[2] A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, From
transverse angular momentum to photonic wheels, Nat.
Photonics 9, 789 (2015).

[3] K. Y. Bliokh and F. Nori, Transverse and longitudinal
angular momenta of light, Phys. Rep. 592, 1 (2015).

[4] K. Y. Bliokh, D. Smirnova, and F. Nori, Quantum spin Hall
effect of light, Science 348, 1448 (2015).

[5] L. J. Luxmoore, N. A. Wasley, A.J. Ramsay, A. C. T. Thijssen,
R. Oulton, M. Hugues, S. Kasture, V. G. Achanta, A. M. Fox,
and M. S. Skolnick, Interfacing Spins in an InGaAs Quantum
Dot to a Semiconductor Waveguide Circuit Using Emitted
Photons, Phys. Rev. Lett. 110, 037402 (2013).

[6] C. Junge, D. O’Shea, J. Volz, and A. Rauschenbeutel,
Strong Coupling between Single Atoms and Nontransversal
Photons, Phys. Rev. Lett. 110, 213604 (2013).

[7] K. Y. Bliokh, F.J. Rodriguez-Fortufio, F. Nori, and A. V.
Zayats, Spinorbit interactions of light, Nat. Photonics 9, 796
(2015).

[8] M. Onoda, S. Murakami, and N. Nagaosa, Hall Effect of
Light, Phys. Rev. Lett. 93, 083901 (2004).

[9] K. Y. Bliokh and Y.P. Bliokh, Conservation of Angular
Momentum, Transverse Shift, and Spin Hall Effect in
Reflection and Refraction of an Electromagnetic Wave
Packet, Phys. Rev. Lett. 96, 073903 (2006).

[10] O. Hosten and P. Kwiat, Observation of the spin Hall effect
of light via weak measurements, Science 319, 787 (2008).

[11] A. Aiello and J. P. Woerdman, Role of beam propagation in
Goos-Hinchen and ImbertFedorov shifts, Opt. Lett. 33,
1437 (2008).

[12] K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, Geo-
metrodynamics of spinning light, Nat. Photonics 2, 748
(2008).

[13] Y. Gorodetski, K. Y. Bliokh, B. Stein, C. Genet, N. Shitrit,
V. Kleiner, E. Hasman, and T. W. Ebbesen, Weak Measure-
ments of Light Chirality with a Plasmonic Slit, Phys. Rev.
Lett. 109, 013901 (2012).

[14] K. Y. Bliokh and A. Aiello, Goos-Hidnchen and Imbert-
Fedorov beam shifts: An overview, J. Opt. 15,014001 (2013).

[15] A. Dogariu and C. Schwartz, Conservation of angular
momentum of light in single scattering, Opt. Express 14,
8425 (2006).

[16] Y. Zhao, J.S. Edgar, G. D. M. Jeffries, D. McGloin, and
D. T. Chiu, Spin-to-Orbital Angular Momentum Conversion
in a Strongly Focused Optical Beam, Phys. Rev. Lett. 99,
073901 (2007).

[17] K. Y. Bliokh, E.A. Ostrovskaya, M. A. Alonso, O.G.
Rodriguez-Herrera, D. Lara, and C. Dainty, Spin-to-orbital
angular momentum conversion in focusing, scattering, and
imaging systems, Opt. Express 19, 26132 (2011).

[18] R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A.
Rauschenbeutel, Quantum state-controlled directional spon-
taneous emission of photons into a nanophotonic wave-
guide, Nat. Commun. 5, 5713 (2014).

[19] I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G.
Guendelman, and B. Dayan, All-optical routing of single
photons by a one-atom switch controlled by a single photon,
Science 345, 903 (2014).

[20] L. A. Coldren and S. W. Corzine, Diode Lasers and Pho-
tonic Integrated Circuits, 2nd ed. (Wiley-Blackwell,
New York, 2012).

[21] C.C. Leary, M. G. Raymer, and S.J. van Enk, Spin and
orbital rotation of electrons and photons via spin-orbit
interaction, Phys. Rev. A 80, 061804(R) (2009).

053901-5


https://doi.org/10.1038/nature21037
https://doi.org/10.1038/nphoton.2015.203
https://doi.org/10.1038/nphoton.2015.203
https://doi.org/10.1016/j.physrep.2015.06.003
https://doi.org/10.1126/science.aaa9519
https://doi.org/10.1103/PhysRevLett.110.037402
https://doi.org/10.1103/PhysRevLett.110.213604
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1038/nphoton.2015.201
https://doi.org/10.1103/PhysRevLett.93.083901
https://doi.org/10.1103/PhysRevLett.96.073903
https://doi.org/10.1126/science.1152697
https://doi.org/10.1364/OL.33.001437
https://doi.org/10.1364/OL.33.001437
https://doi.org/10.1038/nphoton.2008.229
https://doi.org/10.1038/nphoton.2008.229
https://doi.org/10.1103/PhysRevLett.109.013901
https://doi.org/10.1103/PhysRevLett.109.013901
https://doi.org/10.1088/2040-8978/15/1/014001
https://doi.org/10.1364/OE.14.008425
https://doi.org/10.1364/OE.14.008425
https://doi.org/10.1103/PhysRevLett.99.073901
https://doi.org/10.1103/PhysRevLett.99.073901
https://doi.org/10.1364/OE.19.026132
https://doi.org/10.1038/ncomms6713
https://doi.org/10.1126/science.1254699
https://doi.org/10.1103/PhysRevA.80.061804

PHYSICAL REVIEW LETTERS 121, 053901 (2018)

[22] C.C. Leary and K. H. Smith, Unified dynamics of electrons
and photons via Zitterbewegung and spin-orbit interaction,
Phys. Rev. A 89, 023831 (2014).

[23] D.L.P. Vitullo, C.C. Leary, P. Gregg, R. A. Smith, D. V.
Reddy, S. Ramachandran, and M. G. Raymer, Observation
of Interaction of Spin and Intrinsic Orbital Angular Mo-
mentum of Light, Phys. Rev. Lett. 118, 083601 (2017).

[24] J.D. Joannopoulos, S.G. Johnson, J.N. Winn, and R.D.
Meade, Photonic Crystals: Molding the Flow of Light,
2nd ed. (Princeton University, Princeton, NJ, 2008).

[25] M. Gagné, S. Loranger, J. Lapointe, and R. Kashyap,
Fabrication of high quality, ultra-long fiber Bragg gratings:
Up to 2 million periods in phase, Opt. Express 22, 387
(2014).

[26] Yu.V. Komlenko, Floquet theory. Encyclopedia of Math-
ematics, Facts on File (unpublished).

[27] E. W. Weisstein, Floquet’s Theorem. From MathWorld—A
Wolfram Web Resource, http://mathworld.wolfram.com/
FloquetsTheorem.html.

[28] T. Myint-U and L. Debnath, Linear Partial Differential
Equations for Scientists and Engineers, 4th ed. (Birkhéuser,
Boston, 2007).

[29] L. Carretero, M. Perez-Molina, P. Acebal, S. Blaya, and A.
Fimia, Matrix method for the study of wave propagation in
one-dimensional general media, Opt. Express 14, 11385
(2006).

[30] P. Pereyra, An improved theoretical approach to study
electromagnetic waves through fiber Bragg gratings, Adv.
Condens. Matter Phys. 2017, 4824921 (2017).

[31] I. Bennion, J. A.R. Williams, L. Zhang, K. Sugden, and
N.J. Doran, UV-written in-fibre Bragg gratings, Opt.
Quantum Electron. 28, 93 (1996).

[32] M. Becker, J. Bergmann, S. Briickner, M. Franke, E.
Lindner, M. W. Rothhardt, and H. Bartelt, Fiber Bragg
grating inscription combining DUV sub-picosecond laser
pulses and two-beam interferometry, Opt. Express 16,
19169 (2008).

[33] A. Fu, H. Gao, P. Petrov, and P. Yang, Widely tunable
distributed Bragg reflectors integrated into nanowire wave-
guides, Nano Lett. 15, 6909 (2015).

[34] J.D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley,
New York, 1998).

[35] See  Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.121.053901 for simula-
tion details, which includes Refs. [36—46].

[36] E. W. Weisstein, Vector Laplacian, From MathWorld—A
Wolfram Web Resource, http://mathworld.wolfram.com/
VectorLaplacian.html.

[37] G. Panzarini and L. C. Andreani, Quantum theory of exciton
polaritons in cylindrical semiconductor microcavities, Phys.
Rev. B 60, 16799 (1999).

[38] E. W. Weisstein, Cylindrical Coordinates, From MathWorld—
A Wolfram Web Resource, http://mathworld.wolfram.com/
CylindricalCoordinates.html.

[39] S. Mookherjea and U. Levy, Analysis of longitudinal-field
reflection in dielectric gratings, Phys. Rev. E 71, 056609
(2005).

[40] NIST Digital Library of Mathematical Functions, edited by
F.W.J. Olver, A.B.O. Daalhuis, D.W. Lozier, B.I.
Schneider, R. F. Boisvert, C. W. Clark, B.R. Miller, and

B. V. Saunders, http://dlmf.nist.gov/, release 1.0.17 of 2017-
12-22, Chap. 28. (Cambridge University Press, Cambridge,
England, 2017)

[41] D. Lichtblau and E. W. Weisstein, Condition Number, From
MathWorld—A Wolfram Web Resource, http://mathworld
.wolfram.com/ConditionNumber.html.

[42] A.W. Snyder and W.R. Young, Modes of optical wave-
guides, J. Opt. Soc. Am. 68, 297 (1978).

[43] A.W. Snyder and J.D. Love, Optical Waveguide Theory
(Springer, New York, 1983).

[44] N.S.Kapany and J. J. Burke, Optical Waveguides (Academic,
New York, 1972).

[45] G. Keiser, Optical Fiber Communications (McGraw-Hill,
New York, 1991).

[46] We are using the open source code called MPB: https://mpb
.readthedocs.io/en/latest/.

[47] E.W. Weisstein, Mathieu Differential Equation, From
MathWorld—A Wolfram Web Resource, http://mathworld
.wolfram.com/MathieuDifferential Equation.html.

[48] F. Le Kien, T. Busch, V. G. Truong, and S.N. Chormaic,
Higher-order modes of vacuum-clad ultrathin optical fibers,
Phys. Rev. A 96, 023835 (2017).

[49] G. Blanch, in Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables (Dover,
New York, 1972), Chap. 20.

[50] Y.Z. Ma, Y. Sych, G. Onishchukov, S. Ramachandran, U.
Peschel, B. Schmauss, and G. Leuchs, Fiber-modes and
fiber-anisotropy characterization using low-coherence inter-
ferometry, Appl. Phys. B 96, 345 (2009).

[51] E.N. Bulgakov and A.F. Sadreev, Bound states in the
continuum with high orbital angular momentum in a
dielectric rod with periodically modulated permittivity,
Phys. Rev. A 96, 013841 (2017).

[52] S.J. van Enk and G. Nienhuis, Spin and orbital angular
momentum of photons, Europhys. Lett. 25, 497 (1994).

[53] I. Aharonovich, D. Englund, and M. Toth, Solid-state
single-photon emitters, Nat. Photonics 10, 631 (2016).

[54] J. Petersen, J. Volz, and A. Rauschenbeutel, Chiral nano-
photonic waveguide interface based on spin-orbit interac-
tion of light, Science 346, 67 (2014).

[55] Y.-M. He, G. Clark, J.R. Schaibley, Y. He, M.-C. Chen,
Y.-J. Wei, X. Ding, Q. Zhang, W. Yao, X. Xu, C.-Y. Lu, and
J.-W. Pan, Single quantum emitters in monolayer semi-
conductors, Nat. Nanotechnol. 10, 497 (2015).

[56] P. Senellart, G. Solomon, and A. White, High-performance
semiconductor quantum-dot single-photon sources, Nat.
Nanotechnol. 12, 1026 (2017).

[57] A.B. Young, A.C.T. Thijssen, D. M. Beggs, P. Androvit-
saneas, L. Kuipers, J. G. Rarity, S. Hughes, and R. Oulton,
Polarization Engineering in Photonic Crystal Waveguides
for Spin-Photon Entanglers, Phys. Rev. Lett. 115, 153901
(2015).

[58] B. Lang, R. Oulton, and D. M. Beggs, Optimised photonic
crystal waveguide for chiral lightmatter interactions, J. Opt.
19, 045001 (2017).

[59] B. Lounis and M. Orrit, Single-photon sources, Rep. Prog.
Phys. 68, 1129 (2005).

[60] S. V. Polyakov and A.L. Migdall, Quantum radiometry, J.
Mod. Opt. 56, 1045 (2009).

[61] S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strauf3, S. H.
Kwon, C. Schneider, A. Loffler, S. Hofling, M. Kamp,

053901-6


https://doi.org/10.1103/PhysRevA.89.023831
https://doi.org/10.1103/PhysRevLett.118.083601
https://doi.org/10.1364/OE.22.000387
https://doi.org/10.1364/OE.22.000387
http://mathworld.wolfram.com/FloquetsTheorem.html
http://mathworld.wolfram.com/FloquetsTheorem.html
http://mathworld.wolfram.com/FloquetsTheorem.html
http://mathworld.wolfram.com/FloquetsTheorem.html
http://mathworld.wolfram.com/FloquetsTheorem.html
https://doi.org/10.1364/OE.14.011385
https://doi.org/10.1364/OE.14.011385
https://doi.org/10.1155/2017/4824921
https://doi.org/10.1155/2017/4824921
https://doi.org/10.1007/BF00278281
https://doi.org/10.1007/BF00278281
https://doi.org/10.1364/OE.16.019169
https://doi.org/10.1364/OE.16.019169
https://doi.org/10.1021/acs.nanolett.5b02839
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.053901
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.053901
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.053901
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.053901
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.053901
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.053901
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.053901
http://mathworld.wolfram.com/VectorLaplacian.html
http://mathworld.wolfram.com/VectorLaplacian.html
http://mathworld.wolfram.com/VectorLaplacian.html
http://mathworld.wolfram.com/VectorLaplacian.html
http://mathworld.wolfram.com/VectorLaplacian.html
https://doi.org/10.1103/PhysRevB.60.16799
https://doi.org/10.1103/PhysRevB.60.16799
http://mathworld.wolfram.com/CylindricalCoordinates.html
http://mathworld.wolfram.com/CylindricalCoordinates.html
http://mathworld.wolfram.com/CylindricalCoordinates.html
http://mathworld.wolfram.com/CylindricalCoordinates.html
http://mathworld.wolfram.com/CylindricalCoordinates.html
https://doi.org/10.1103/PhysRevE.71.056609
https://doi.org/10.1103/PhysRevE.71.056609
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://dlmf.nist.gov/
http://mathworld.wolfram.com/ConditionNumber.html
http://mathworld.wolfram.com/ConditionNumber.html
http://mathworld.wolfram.com/ConditionNumber.html
http://mathworld.wolfram.com/ConditionNumber.html
https://doi.org/10.1364/JOSA.68.000297
https://mpb.readthedocs.io/en/latest/
https://mpb.readthedocs.io/en/latest/
https://mpb.readthedocs.io/en/latest/
http://mathworld.wolfram.com/MathieuDifferentialEquation.html
http://mathworld.wolfram.com/MathieuDifferentialEquation.html
http://mathworld.wolfram.com/MathieuDifferentialEquation.html
http://mathworld.wolfram.com/MathieuDifferentialEquation.html
https://doi.org/10.1103/PhysRevA.96.023835
https://doi.org/10.1007/s00340-009-3517-9
https://doi.org/10.1103/PhysRevA.96.013841
https://doi.org/10.1209/0295-5075/25/7/004
https://doi.org/10.1038/nphoton.2016.186
https://doi.org/10.1126/science.1257671
https://doi.org/10.1038/nnano.2015.75
https://doi.org/10.1038/nnano.2017.218
https://doi.org/10.1038/nnano.2017.218
https://doi.org/10.1103/PhysRevLett.115.153901
https://doi.org/10.1103/PhysRevLett.115.153901
https://doi.org/10.1088/2040-8986/aa5f5f
https://doi.org/10.1088/2040-8986/aa5f5f
https://doi.org/10.1088/0034-4885/68/5/R04
https://doi.org/10.1088/0034-4885/68/5/R04
https://doi.org/10.1080/09500340902919477
https://doi.org/10.1080/09500340902919477

PHYSICAL REVIEW LETTERS 121, 053901 (2018)

and A. Forchel, AlIAs/GaAs micropillar cavities with quality [63] A. Mostafazadeh, Optical spectral singularities as threshold

factors exceeding 150.000, Appl. Phys. Lett. 90, 251109 resonances, Phys. Rev. A 83, 045801 (2011).

(2007). [64] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, and
[62] A. Mostafazadeh, Spectral Singularities of Complex Scat- D. N. Christodoulides, Unidirectional Invisibility Induced

tering Potentials and Infinite Reflection and Transmission by PT -Symmetric Periodic Structures, Phys. Rev. Lett. 106,

Coefficients at Real Energies, Phys. Rev. Lett. 102, 220402 213901 (2011).

(2009).

053901-7


https://doi.org/10.1063/1.2749862
https://doi.org/10.1063/1.2749862
https://doi.org/10.1103/PhysRevLett.102.220402
https://doi.org/10.1103/PhysRevLett.102.220402
https://doi.org/10.1103/PhysRevA.83.045801
https://doi.org/10.1103/PhysRevLett.106.213901
https://doi.org/10.1103/PhysRevLett.106.213901

