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We study the relevance of experimental data on heavy-flavor [D0, J=ψ , B → J=ψ and ϒð1SÞ mesons]
production in proton-lead collisions at the LHC to improve our knowledge of the gluon-momentum
distribution inside heavy nuclei. We observe that the nuclear effects encoded in both most recent global fits
of nuclear parton densities at next-to-leading order (nCTEQ15 and EPPS16) provide a good overall
description of the LHC data. We interpret this as a hint that these are the dominant ones. In turn, we perform
a Bayesian-reweighting analysis for each particle data sample which shows that each of the existing heavy-
quark(onium) data set clearly points—with a minimal statistical significance of 7σ—to a shadowed gluon
distribution at small x in the lead. Moreover, our analysis corroborates the existence of gluon
antishadowing. Overall, the inclusion of such heavy-flavor data in a global fit would significantly reduce
the uncertainty on the gluon density down to x ≃ 7 × 10−6—where no other data exist—while keeping an
agreement with the other data of the global fits. Our study accounts for the factorization-scale uncertainties
which dominate for the charm(onium) sector.
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Introduction—Parton-distribution functions (PDFs),
describing the longitudinal-momentum distributions of
quarks and gluons inside hadrons, provide the essential
link between the measurable hadronic cross sections and
the perturbatively calculable cross sections of high-energy
processes induced by quarks and gluons. The precise
determination of PDFs of protons, fpi , is an extremely
active area of research where several groups perform global
analyses of a wide variety of experimental hard-process
data. The modern global analyses [1–6] have evolved into
impressive ventures with state-of-the-art perturbative cal-
culations and sophisticated statistical methods to extract
optimum PDFs along with their uncertainties.
The situation is more challenging—but not less

interesting—for PDFs of nucleons inside nuclei, f½p;n�=Ai ,
with nuclear data significantly more complex to collect and
with two additional degrees of freedom, the number of
protons (Z) and neutrons (N ¼ A − Z) in the studied nuclei.
Nuclear PDFs (nPDFs) are key ingredients to use pertur-
bative probes of the quark-gluon plasma produced in

ultrarelativistic nucleus-nucleus collisions at RHIC and
the LHC [7]. As such, their determination goes even
beyond the understanding of the nucleus content in terms
of quarks and gluons. Since the early 1980s, we know that
the nuclei are not a simple collection of free nucleons, and
nPDFs are not equal to a sum of nucleon PDFs. In fact, the
corresponding analyses rather bear on nuclear-modification
factors (NMF), like in lepton-nucleus (lA) collisions
R½FlA

2 � ¼ FlA
2 =ðZFlp

2 þ ðA − ZÞFln
2 Þ for the deep-inelas-

tic scattering (DIS) structure function F2 and parton-level
NMFs RA

i ðx; μFÞ ¼ fAi =ðZfpi þ Nfni Þ with fAi ≡ Zfp=Ai þ
Nfn=Ai (i ¼ g, q, q̄), instead of the absolute nPDFs.
Based on earlier studies of F2 [8–14], one knows that, for

the quarks, (i) RA
q > 1 for x≳ 0.8 (Fermi-motion region),

(ii) RA
q < 1 for 0.25≲ x≲ 0.8 (EMC region), (iii) RA

q > 1

for 0.1≲ x≲ 0.25 (antishadowing region), and (iv) RA
q < 1

for x≲ 0.1 (shadowing region) where different physics
mechanisms were proposed to explain this behavior. At
medium and large longitudinal-momentum fractions, x, RA

q

is usually explained by nuclear-binding and medium effects
and the Fermi motion of the nucleons [15] but a fully
conclusive picture has not yet emerged after the discovery
of the EMC effect [16]. At small x, coherent scatterings
inside the nucleus explain the observed suppression of F2,
referred to as shadowing. Antishadowing is even less
understood. Therefore, just like in the nucleon case,
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nPDFs are determined by performing global analyses of
experimental data [17–21].
Compared to the quark content—directly probed by

data on lA DIS and the proton-nucleus (pA) Drell-Yan
process—, the gluon content of the nuclei is even less
known. To compensate this lack of constraints, both most
recent global next-to-leading order (NLO) analyses of
nPDFs, nCTEQ15 [18], and EPPS16 [17], used RHIC
pion and LHC jet data (in case of EPPS16) to constrain the
gluon densities down to x ∼ 10−3. However, there is no data
at x≲ 10−3. Hence, we do not know anything about the
gluon at small x; the gluon nPDFs in this region are
obtained by extrapolating nPDFs from larger x region. As
such, they essentially depend on the parametrizations of the
x dependence of nPDFs at the initial scale μF;0 ∼ 1 GeV.
As discussed in Refs. [22,23], this lack of knowledge of

the gluon nPDF is thus a priori not reflected by the set of
error PDFs provided together with the best fit PDFs.
Accordingly, increasing the flexibility of the initial
nPDF parametrization leads to much larger uncertainties
in this region as evidenced by the EPPS16 set as opposed to
the EPS09 [24] and nCTEQ15 ones. Clearly, a determination
of the small-x gluon nPDFs and the reduction of their
uncertainties is necessary for the heavy-ion phenomenology.
Recently, using heavy-flavor (HF) production at the LHC

was proposed for an improved determination of the small-x
gluons in the proton [25–29]. We also noticed an earlier
proposal [30]. Motivated by the results of these studies, we
performed the first analysis of the impact of heavy-quark
(onium) data in LHC proton-lead (pPb) collisions on the
determination of nPDFs (nCTEQ15, EPPS16) as a way to
constrain the small-x gluon density in lead down
to x ≃ 7 × 10−6.
The interpretation of our results depends on the reliabil-

ity of nPDF factorization in the nuclear environment, which
is a question of considerable theoretical and practical
importance. In this context, we note that other cold-nuclear
matter (CNM) effects [31–51] could become relevant in
some specific conditions, in particular for the quarkonium
case. In our study, they can be seen as higher-twist (HT)
contributions and the use of leading-twist (LT) factorization
becomes a working assumption to be tested. Once validated
by data, as we will show, this assumption of LT factori-
zation can be employed to learn about the internal structure
of the nucleus.
Methodology—The cross sections measured in pA col-

lisions at colliders are nearly always normalized to the pp
ones [7,52,53] since one is primarily interested in devia-
tions from the free nucleon case, up to isospin effects. For
DIS off a nucleus A, and thus FlA

2 , the NMF R½F2� is
directly related to the modification RA

q of the (anti)quark
nPDF compared to its PDF. For the gluons, one similarly
defines RA

g entering theoretical evaluations of the NMF
RpA ≡ dσpA=ðA × dσppÞ, which can be differential in the
transverse momentum (PT;H) or the center-of-momentum
(c.m.s.) rapidity yc:m:s:;H of the hadron H. The nPDF sets

provide parametrization of RA
g at any x and scale. In the

absence of nuclear effects, RA
g ¼ 1 and we observe

RpAðOHÞ ≃ 1. Unlike the simple case of F2 at leading
order, RA

g enters RpA via a convolution which requires a
control of the parton-scattering kinematics.
The focus on RpA has several advantages. It allows us to

leave aside, in the theory evaluation, the proton PDF
uncertainty at very small x which may not always be
negligible. Second, RpA is in general less sensitive to QCD
corrections which may affect the normalization of the
cross-section predictions. Third, some experimental uncer-
tainties cancel in RpA and, at the LHC, RpPb is usually more
precise than the corresponding pPb cross sections.
To connect RpA and RA

g , we will use the data-driven
approach [54–56] where the parton-scattering-matrix ele-
ments squared jAj2 are parametrized into empirical functions
and determined from pp data assuming a 2 → 2 kinematics
togetherwith givenprotonPDF,wherewechooseCT14NLO
[1]. It was first motivated to bypass the complications
inherent to our lack of understanding of the quarkonium-
production mechanisms (see, e.g., Refs. [7,57]) whereas it
suffices to evaluate the nPDF effects in RpA. Such an
approach also applies to open HF hadrons [54]. In the latter
cases, full-fledged perturbative QCD computations exist
[58–71] which we have used to validate the method. As in
Ref. [54], we use a specific functional form for jAj2 proposed
inRef. [72] tomodel single-quarkoniumhadroproduction for
double-parton scattering [72–76], which is sufficiently
flexible togive a gooddescriptionof single-inclusive-particle
production.
There are several advantages in using this approach:

(i) the uncertainty in the pp cross section is controlled by
the measured data, (ii) it can be applied to any single-
inclusive-particle spectrum as long as the relative weights
of the different channels (parton luminosities times jAj2)
are known, and (iii) the event generation is much faster than
with QCD-based codes, allowing us to study several nPDFs
with several scale choices in an acceptable amount of
computing time. Indeed, to quantify the intrinsic theoretical
uncertainty from the factorization scale μF, we have varied
it about a default scale μ0 as μF ¼ ξμ0 with ξ ¼ 0.5, 1.0,
2.0. μ20 was taken to be M2

Q þ P2
T;Q for Q ¼ ðJ=ψ ;ϒÞ,

4M2
D þ P2

T;D for D0, and 4M2
B þ ðMB=MJ=ψÞ2 × P2

T;J=ψ

for B → J=ψ.
Compared to Ref. [54], the pp baseline study was

improved. For the first time, we considered the B →
J=ψ data. For D0, J=ψ and ϒð1SÞ, we advanced the scale
study with a variation in the pp baseline itself and not only
in RPb

g ðx; μFÞ, where pp fits were done with each scale
choice. As what concerns the RpPb results, we checked that,
for the cases of D0 and B → J=ψ production, the scale
uncertainty is nearly identical to that with the “fixed-order-
plus-next-to-leading log” (FONLL) [64–66] calculation
(see a comparison in the Supplemental Material [77]).
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As expected, FONLL gives much larger scale uncertainties
on the yields.
As announced, to study the impact of HF experimental

data on the gluon nPDF determination without performing
a full fit, we employed the Bayesian-reweighting method
[78–83]. This method is a direct application of Bayes
theorem allowing one to include new data into a given PDF
analysis without a fit. For the present study, we followed
the same approach as in Ref. [83]. Since both nCTEQ15
and EPPS16 are Hessian nPDFs, we converted the Hessian
error PDFs into 104 Monte Carlo replicas, representing the
underlying probability distribution [84]. For each PDF
replica, one computes the χ2 of the considered data which is
used to reweight them. Replicas describing better the data
get larger weights than those unfavored by them. Hence,
one obtains a modified probability distribution of the
nPDFs like a fit would do.
Data selection—Like for all global PDF fits, a data

selection is in order to avoid HT corrections. In our case, it
is also important to select a kinematical region where gluon
fusion dominates and other effects are negligible. As such,
we considered the HF production in pA collisions at LHC
energies. In the quarkonium case, due to the large Lorentz
boost at these energies, the heavy-quark pair remains
almost pointlike all along its way through the nuclear
matter. Therefore, breakup [85,86], thought to be important
at lower energies, is negligible at the LHC. We focused on
J=ψ and ϒð1SÞ to limit the contamination by possible
comover effects [33–36,87], on the more fragile excited
states [ψð2SÞ, ϒð2SÞ, ϒð3SÞ].
Overall, this gives the ALICE [88] and LHCb [89] D0

data; the ALICE [90,91] and LHCb [92,93] J=ψ data; the
LHCb [93] B → J=ψ data; the ALICE [94], ATLAS [95],
and LHCb [96] ϒð1SÞ data. We could also add the dAu
J=ψ RHIC data. Instead, we preferred to focus on the LHC
data at 5 and 8 TeV and to use the RHIC [97,98] and the
new LHC [99,100] ones as cross checks.
Results—Figures (1a–1d) show a representative com-

parison of our theoretical calculations with the data for D0,
J=ψ , B → J=ψ and ϒð1SÞ. The NMF obtained with
nCTEQ15 and EPPS16 have significantly different central
values and uncertainties but both agree with the data. This
observation is striking as the used gluon nPDFs were
derived from totally different observables like DIS and
Drell-Yan processes, and yet they allow us to reproduce the
most important feature of the data [54] which makes our
reweighting analysis meaningful. We see this as a con-
firmation of the LT factorization (see also Refs. [101–104]).
As for the reweighting results (gray-blue hatched bands

in Figs. [1(a)–1(d)], if we could simply fix the scale to a
single value for each particle, the LHC RpPb data for prompt
D0 and J=ψ would reduce the uncertainties of the gluon
density by a factor 3 for EPPS16 and 2 for nCTEQ15 down
to x ≃ 7 × 10−6 [compare the gray-blue and red hatched
bands in Figs. 1(a) and 1(d)]. The current B → J=ψ and

ϒð1SÞ data do not constrain the gluon nPDFs due to their
large uncertainties and relatively large scales. Yet, the larger
samples collected at 8 TeV should improve the situation.
We now discuss the scale uncertainties and recall that

dσpPb ∼ fpg ðfpgRPb
g Þ ⊗ jAj2. Because of QCD evolution,

a larger μF implies a RPb
g closer to unity together

with a smaller PDF uncertainty. Indeed, the bands in
Figs. 1(a)–1(d) are closer to unity and shrink from μF ¼
0.5μ0 to μF ¼ 2μ0. For nCTEQ15, such variations for D0

and J=ψ are even similar to the nPDF uncertainty itself.
Clearly, such a scale ambiguity should impact the

reweighting results even though the (gray-blue) reweighted
bands seems not to show such a sensitivity. It is perfectly
normal since the replicas are to match the data. The key
point is that they match it at different scales. Consequently,
when the reweighted bands are evolved to a common scale
μF ¼ 2 GeV, the reweighted nPDF uncertainties obtained
with different scales do not superimpose (compare the
black, blue, and green bands in Figs. 1(e)–1(f)).
The envelope of these scale-induced variations is about

twice as large as their width for the D0 and J=ψ cases,
confirming that the scale uncertainty must be accounted for
to obtain reliable uncertainties from these precise data. For
the heavier bottom(onium) states, the scale uncertainty is
not only much smaller than the nPDF uncertainties but also
very small in absolute value, which implies that more
precise data could play a major role for a precision
determination of the gluon nPDF at small x.
Despite these uncertainties, our results are striking: the

D0 and J=ψ data point to the same magnitude of RPb
g and

their inclusion in the EPPS16 fit would likely result in a
considerable reduction of its gluon uncertainty by a factor
as large as 1.7, see Fig. 1(f). For nCTEQ15, the effect
seems less spectacular but we should recall that the original
nCTEQ15 values at x below 10−3 are pure extrapolations.
The dashed red lines in Fig. 1(e) illustrates this by showing
two equally good fits [22], which are now excluded
by the LHC HF pPb data. Overall, the nCTEQ15 extrapo-
lation to small x is unexpectedly well confirmed by the
charm(onium) data.
Beside the mere observations of the nPDF-uncertainty

reduction, our results have two important physics inter-
pretations. First, the LHC pPb HF data give us the first real
observation of gluon shadowing at small x with RPb

g smaller
than unity—the no-shadowing null-hypothesis—by more
than 11.7 (10.9) and 7.3 (7.1) σ at x ¼ 10−5 and μF ¼
2 GeV for nCTEQ15 and EPPS16 usingD0 (J=ψ) data [see
Figs. 1(e)–1(f), left panels]. Our results thus quantitatively
confirm the qualitative observations of [103–105] indi-
rectly made from J=ψ photoproduction on lead, which
strictly speaking is sensitive to generalized parton distri-
butions—not nPDFs—and suffers from significant scale
uncertainties [106,107]. Second, our analysis corroborates
the existence of a gluon antishadowing [108]: RPb

g > 1 for
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x ≃ 0.1. This can be seen in Figs. 1(e) and 1(f) where the
error band after reweighting is smaller and more clearly
separated from unity. The analyzed LHC heavy quark
(onium) data cover the x region 7 × 10−6 ≲ x≲ 0.1. It is an
interesting question how much of the antishadowing can be
explained by direct data constraints in the region x≲ 0.1
and how much of the effect is indirectly driven by the

momentum sum rule correlating a strong suppression at
small x with an enhancement in the antishadowing region.
We leave this question open for a future publication.
Finally, we consider the global coherence of the HF

constraints with other data (to be) included in nPDF global
fits. We do it with nCTEQ15 of which 2 of us are authors.
We thus have all the data at hand. First, let us observe that

FIG. 1. Selected RpPb results before and after reweighting for (a) prompt D0, (b) prompt J=ψ , (c) B → J=ψ , (d) ϒð1SÞ as well as the
final reweighted nPDF uncertainties (e) nCTEQ15 and (f) EPPS16 with constraints from both RpPb vs PT;H and yc:m:s:;H data. The shown
experimental data are from Refs. [89,93,94,99,100]. The error bands due to nPDF uncertainty are given at 68% C.L.
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the agreement with the DIS NMC data [109], the only
DIS set with a mild sensitivity to the gluon distribution, is
not degraded in a statistically significant way. The original
χ2=Ndata, 0.58, becomes (0.81, 0.58, 0.57) for D0 with
ξ ¼ ð0.5; 1; 2Þ, and is similar for other hadrons. Clearly, the
inclusion of HF data does not create any tension with the
DIS data. One can also make a similar comparison for
the W=Z pPb LHC data whose impact on nCTEQ15 was
recently studied [83]. The χ2=Ndata of these data was found
to be 2.43, and after our HF reweighting it becomes (2.14,
2.49, 3.11) for D0. With the same caveats as above, our
reweighted nPDFs do not change the theory-data compat-
ibility with the LHC W=Z data. The χ2=Ndata of the J=ψ
PHENIX RdAu results [97,98] with nCTEQ15 is (3.58,
2.55, 3.12) and after our J=ψ reweighting becomes (1.81,
2.38, 2.77). This confirms the global coherence of the HF
constraints. Tables of these χ2 values can be found as
Supplemental Material [77].
Conclusion—In this Letter, we used, for the first time,

experimental data for the inclusive HF [D0, J=ψ , B → J=ψ ,
ϒð1SÞ] production in pPb collisions at the LHC to improve
our knowledge of the gluon density inside heavy nuclei. We
compared the data with computations obtained in the
standard LT factorization framework endowed with the
two most recent globally fit nPDFs (nCTEQ15, EPPS16).
No other nuclear effects were included which are supposed
to be of HT origin and hence suppressed as inverse powers
of the hard scale. We found a good description of the LHC
data with both nCTEQ15 and EPPS16 nPDFs validating
our theoretical framework.
By performing a Bayesian-reweighting analysis and

studying the scale uncertainties, we demonstrated that
the existing heavy quark(onium) data can significantly—
and coherently—reduce the uncertainty of the gluon
density down to x ≃ 7 × 10−6. For charm(onium), the
gluons are shadowed with a statistical significance beyond
7σ at μF ¼ 2 GeV and x ¼ 10−5. These data should thus be
included in the next generation of global nPDF analyses.
While our results cannot rule out that other HT CNM
effects were effectively “absorbed” into seemingly univer-
sal LT nPDFs, the observed consistent description of both
theD0 and J=ψ data is far nontrivial since they may interact
differently with the nuclear matter.
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