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The Ooguri-Vafa swampland conjectures claim that in any consistent theory of quantum gravity, when
venturing to large distances in scalar field space, a tower of particles will become light at a rate that is
exponential in the field-space distance. We provide a novel viewpoint on this claim: If we assume that a
tower of states becomes light near a particular point in field space, and we further demand that loop
corrections drive both gravity and the scalar to strong coupling at a common energy scale, then the
requirement that the particles become light exponentially fast in the field-space distance in Planck units
follows automatically. Furthermore, the same assumption of a common strong-coupling scale for scalar
fields and gravitons implies that, when a scalar field evolves over a super-Planckian distance, the average
particle mass changes by an amount of the order of the cutoff energy. This supports earlier suggestions that
significantly super-Planckian excursions in field space cannot be described within a single effective field
theory. We comment on the relationship of our results to the weak gravity conjecture.
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Introduction.—A question of fundamental interest in the
study of quantum gravity is the following: Which low-
energy gravitational effective field theories (EFTs) admit an
ultraviolet (UV) completion? Said differently, what are the
low-energy predictions of quantum gravity?
The string theory provides a very large class of quantum

gravities, with a wide variety of possible low-energy EFTs
(see, e.g., [1,2]). But, despite this enormous “landscape” of
vacua, there is growing evidence that they all share
identifiable common features, distinguishing them from
“swampland” [3], a large class of seemingly consistent
gravitational EFTs with no quantum gravity UV comple-
tion. Thus, our original question becomes this: How do we
distinguish the swampland from the landscape?
There are several candidate criteria for fencing off parts of

the swampland. In this Letter, we focus on the “swampland
conjectures” of Refs. [3,4] concerning the moduli space of
quantum gravity. We will apply ideas about the effective
field theory and the infrared emergence of weak coupling
recently developed in Ref. [5] (see also [6]), where they were
used to understand another candidate swampland criterion,

the weak gravity conjecture (WGC) [7]. Other recent works
on the swampland conjectures include Refs. [8–13].
Controlled string compactifications typically have many

“moduli”: light scalars with gravitational-strength cou-
plings. This is related to the fact that the string theory
has no continuous parameters, so any freely adjustable
coupling must be controlled by the vacuum expectation
value (VEV) of a scalar field. In the simplest supersym-
metric examples, the moduli are exactly massless and
parametrize a continuous moduli space of vacua. More
realistic examples require a moduli potential with isolated
minima—the vacua of the theory—but the only reliable
way to generate vacua in the weak-coupling regime is
through nonperturbative effects. Since these are exponen-
tially small at weak coupling, the moduli masses are
likewise exponentially suppressed relative to, e.g., the
Kaluza-Klein (KK) scale or the string scale.
“Conjecture 0” of Ref. [4] generalizes these observations

to any quantum gravity.
Conjecture 0.—Every continuous parameter in a quan-

tum gravity is controlled by the VEV of a scalar field.
Thus, we expect moduli to be ubiquitous in the land-

scape, and it is natural to investigate the properties of the
moduli space of quantum gravity. In particular, we focus on
two related conjectures from Ref. [4].
Conjecture 1.—The moduli space has an infinite diam-

eter (despite a finite volume [3,14]).
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Conjecture 2.—At large distances in moduli space, an
infinite tower of resonances becomes light exponentially
quickly with an increasing distance.
Here distances in moduli space are defined by geodesic

distances with respect to the moduli space metric gijðϕÞ:

LðmodÞ
kin ¼ 1

2
gijðϕÞ∂ϕi · ∂ϕj: ð1Þ

Implicit in these conjectures is the notion that parametri-
cally distant points in moduli space correspond to weak-
coupling limits.
In this Letter, we explore the connection between weak

coupling, a tower of light resonances, and large distances in
moduli space. Central to our arguments is the assumption,
developed in Ref. [5], that weak coupling in quantum
gravities is a long-distance phenomenon, with all physics
becoming strongly coupled in the ultraviolet at a common
“quantum gravity scale.” This occurs in many concrete
quantum gravities, such as large volume compactifications
of M theory. While there are possible counterexamples as
well (see [5]), a suitable generalization of this notion may
address these, and it is worthwhile to understand the
consequences regardless.
This assumption clarifies the connection between light

resonances and weak coupling. For example, light, charged
resonances screen gauge forces, leading to weak gauge
couplings in the infrared: This is essentially the mechanism
of Ref. [5].
We now explain the connection between light resonances

and parametrically large distances in moduli space, apply-
ing the same assumption. We find that, if a tower of fields
becomes light, the requirement of a common quantum
gravity scale implies they do so exponentially quickly, so
the quantitative portion of Conjecture 2 can be derived from
our qualitative assumptions. Applying similar reasoning,
we further consider the effect of moving a large but
bounded distance in moduli space, with particular attention
to the case of an axion with a trans-Planckian decay
constant. In that case, our arguments imply that many
modes have masses that change by an amount large
compared to the quantum gravity cutoff energy. This casts
some doubt on the utility of the effective field theory for the
treatment of trans-Planckian field ranges in quantum
gravity. [While this paper was in preparation (following
a strategy sketched in the conclusions of Ref. [5]), we
became aware of independent work [15] with some over-
lapping results.]
Light resonances and large distances.—Motivated by

Conjecture 2, we consider a trajectory in moduli space
approaching a singular point where an infinite tower of
resonances becomes massless. This trajectory is parame-
trized by a scalar field ϕ; we take the singular point to be
ϕ ¼ 0 without the loss of generality. We assume that the
spectrum is dominated by an infinite tower of particles that
become uniformly light as ϕ → 0, so

mn ≈ μnϕþOðϕ2Þ ð2Þ

after an appropriate redefinition of ϕ. In making this ansatz,
we are no longer free to assume that ϕ has a canonical
kinetic term. In fact, we will soon show that the kinetic term
for ϕ blows up as ϕ → 0, and the geodesic distance to
ϕ ¼ 0 diverges logarithmically in accordance with
Conjecture 2.
The ansatz (2) is quite general. For instance, suppose

there are multiple towers with masses trending to zero at
different rates. Then, by moving far enough in the moduli
space, we can focus on the tower that becomes light fastest
and parametrize the modulus ϕ so that this tower becomes
light in a linear fashion. Thus, aside from being justified by
specific examples, we believe that (2) captures the most
general intended meaning of “tower” in Conjecture 2.
For concreteness, we take the particles in the tower to be

Dirac fermions, though similar results apply for other spins.
The Lagrangian is then

L ¼ 1

2
KðϕÞð∂ϕÞ2 − VðϕÞ þ

X
n

½ψ̄nði=∂ − μnϕÞψn�: ð3Þ

Fermion loops will correct the ϕ propagator as well as
S-matrix elements for scattering of ϕ particles. At some
energy scale Λ, these loop corrections become as large as
the tree-level contribution, and the EFT breaks down. We
follow the approach of Ref. [5] to ascertain the scale Λ,
with the new ingredient that ΛðϕÞ depends on the value of
the modulus. (We work in the Einstein frame, holding the
D-dimensional Newton’s constant fixed as ϕ varies.
Alternatively, one could hold the cutoff Λ fixed and view
the strength of gravity as varying across the moduli space,
which may be more natural when ϕ → 0 corresponds to a
decompactification limit.)
We now compute the loop correction to the ϕ propagator

from the tower of fermions, perturbing around a fixed
expectation value hϕi ¼ ϕ0. [For general VðϕÞ and general
ϕ0, there is a tadpole, and the field will begin to roll.
Implicit in the notion of a modulus is that the potential is
relatively flat; hence, there is a finite timescale over
which our computation of scattering with fixed hϕi ¼ ϕ0

makes sense. We comment further on the flatness of the
potential below.] The canonically normalized fluctuation
ϕ̄ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðϕ0Þ

p ðϕ − ϕ0Þ has the propagator

h ˜̄ϕðpÞ ˜̄ϕð−pÞi ∼ 1

p2 −m2
ϕ þ iε

1

1þ Πðp2Þ : ð4Þ

By adding appropriate counterterms, we can choose the
renormalization condition Πð0Þ ¼ 0 (up to possible infra-
red divergences if there is a massless particle coupling
to ϕ).
Parametrically, the large-p behavior of the contribution

to the one-loop integral from fermion n is
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jΠnðp2 ≫ m2
nÞj∼

μ2npD−4

Kðϕ0ÞlD
∼

1

Kðϕ0Þ
�∂mn

∂ϕ
�

2 pD−4

lD
; ð5Þ

where lD is a loop factor (e.g., l4 ≃ 16π2) which we omit
henceforward. To assess the strong-coupling scale, we
define a function λϕðpÞ that captures the parametric
contribution to Πðp2Þ from the sum over only those
particles with mass less than p. We have

λϕðpÞ ≔
pD−4

Kðϕ0Þ
X

njmnðϕ0Þ<p

�∂mn

∂ϕ
�

2

: ð6Þ

From this expression, one can read off the strong-coupling
scale Λðϕ0Þ as the value of p where λϕðpÞ ∼ 1. The result
clearly depends on the unknown function Kðϕ0Þ.
Strong coupling and gravity.—The loop corrections

from the tower of light particles also affect the graviton
propagator, leading to strong coupling [16,17]. These loop
corrections are parametrically controlled by

λgravðpÞ ≔ GNpD−2NðpÞ; ð7Þ

where NðpÞ ¼ P
njmnðϕ0Þ<p 1 is the number of weakly

coupled particles with a mass below p.
Consider the “species bound” scale ΛQGðϕ0Þ at which

λgravðpÞ ∼ 1:

ΛD−2
QG ¼ 1

GNNðΛQGÞ
: ð8Þ

In terms of this scale, we have

λϕðΛQGÞ ¼
1

Λ2
QGKðϕ0ÞGN

hμ2iΛQG
; ð9Þ

where

hμ2iΛ ≔
1

NðΛÞ
X

njmnðϕ0Þ<Λ

�∂mn

∂ϕ
�

2

≈
1

NðΛÞϕ2

X
njmnðϕ0Þ<Λ

m2
n ∼

Λ2

ϕ2
: ð10Þ

In the last line, we have made a mild but crucial assumption
that most of the particles in the tower lie near the cutoff, as
in any tower with an increasing density of states dN=dp or
with a power-law (increasing or decreasing) density of
states.
Given this assumption, if we demand that the modulus

becomes strongly coupled at the “quantum gravity scale”
ΛQG in (8), we constrain the form of the kinetic term:

λϕðΛQGÞ ∼ 1 ⇒ Kðϕ0Þ ∼
1

GNϕ
2
0

: ð11Þ

That is, for a wide variety of spectra for the tower of states
that become light as ϕ → 0, the condition that the modulus
becomes strongly coupled at the quantum gravity scale
fixes the kinetic term of the modulus to be

Lkin ∼MD−2
Pl

1

ϕ2
ð∂ϕÞ2: ð12Þ

In particular, distances in the field space grow logarithmi-
cally with the value of ϕ. Equivalently, the particles in the
tower become exponentially light in the field-space dis-
tance, precisely as required by Conjecture 2. Slightly
different calculations give the same results for a tower of
scalars; importantly, unlike mass corrections, these kinetic
corrections do not cancel between scalars and fermions in
supersymmetric theories. (There are some subtleties related
to counterterm contributions in D ¼ 4, which, however, do
not change the result.)
Under similar assumptions about the density of states

within the tower, we obtain the energy-dependent statementP
njmnðϕ0Þ<pm

2
n ∼ NðpÞp2 for any p ≫ p0, with p0 some

characteristic scale (e.g., the lowest mass threshold in the
tower). Applying (12), we find

λϕðpÞ ∼ GNNðpÞpD−2 ∼ λgravðpÞ; p ≫ p0: ð13Þ

This can be interpreted as a type of “unification” of the
strengths of loop effects for gravity and for the modulus at
energies above p0, similar to the unification of gauge and
gravity loops discussed in Ref. [5].
Following (12), we can canonically normalize the

modulus as φ ≃MðD−2Þ=2
Pl logðϕ=ϕ0Þ, expanding about

ϕ ¼ ϕ0. From (3), this leads to couplings of the form

L ⊃ −
mn

MðD−2Þ=2
Pl

φψ̄nψn −
mn

2MD−2
Pl

φ2ψ̄nψn − � � � : ð14Þ

We see that the modulus has gravitational-strength cou-
plings to the particles in the tower; this is a well-known
characteristic of moduli, here a natural consequence of our
assumptions.
Trans-Planckian distances and EFT.—Conjecture 2

implies that a single EFT cannot describe parametrically
large distances in moduli space, since a parametrically large
number of massive particles inevitably become light, and
we need UV information to determine their properties.
However, the conjecture places no restrictions on tra-

versals that are larger thanMPl but not parametrically large.
For instance, there are examples in which the density of
states is essentially constant along a trajectory of super-
Planckian length. (Such a trajectory is not necessarily a
geodesic in moduli space [12].) This typically occurs when
the modulus in question is an axion, consistent with
Conjecture 2 because the compact field space prevents
an arbitrarily large excursion. While axion excursions do
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not lead to a tower of particles becoming light, we still
expect a tower of particles with masses that change as the
axion expectation value varies. When the axion field
completes a full circuit, the spectrum must return to where
it started, perhaps with a nontrivial monodromy.
Motivated by axions, we reconsider the effect of a tower

of particles with masses mnðϕÞ that depend on a modulus
ϕ, dropping the assumption that the masses vanish as
ϕ → 0. By the same analysis as above, if the modulus
becomes strongly coupled at the quantum gravity scale
ΛQG, i.e., if λϕðΛQGÞ ∼ 1, then the modulus kinetic term is
approximately

KðϕÞ ∼ ΛQGðϕÞD−4
X

njmnðϕÞ<p

�∂mn

∂ϕ
�

2

: ð15Þ

While, in general, both KðϕÞ and ΛQGðϕÞ will depend on
the modulus, if ϕ is an axion, then typically both are
approximately constant—roughly speaking because the
axion has an approximate shift symmetry. In this case,
by averaging over all particles with a mass below the cutoff,
we obtain

ΛD−4
QG NðΛQGÞ

��∂mn

∂ϕ
�

2
�
∼ K: ð16Þ

We can eliminate NðΛQGÞ from this expression using the
species bound (8). Under a traversal ϕ → ϕþ Δϕ, we find

hðΔmnÞ2i ∼
ðΔϕÞ2K
MD−2

Pl

Λ2
QG: ð17Þ

(Here we assume that the spectrum is not rapidly oscillating
as a function of ϕ in order to approximate ð∂mn=∂ϕÞ∼
ðΔmn=ΔϕÞ.) Since Δϕ

ffiffiffiffi
K

p
=MðD−2Þ=2

Pl is the length of the
traversal in Planck units, we learn that, as ϕ rolls a
Planckian distance in field space, the typical massive mode
shifts by an amount of the order of the quantum gravity
scale ΛQG.
This is reminiscent of a phenomenon observed in

Ref. [18]: In certain models of large-field axion inflation
(including some models of decay constant alignment [19]
and axion monodromy [20,21]), modes that begin above
the UV cutoff become very light as the inflaton rolls.
However, (17) does not necessarily imply that modes above
ΛQG become very light under a super-Planckian traversal

Δϕ
ffiffiffiffi
K

p
> MðD−2Þ=2

Pl : A mode with a mass of the order of
ΛQG generically acquires a different mass of the order of
ΛQG. On the other hand, (17) does imply that generically an
order-one fraction of the modes will pass through the cutoff
during this traversal. (Similar phenomena were observed
in a particular model with towers of spectator fields
in Ref. [22].)

To illustrate these points, consider an axion θ arising
from compactification of a five-dimensional Uð1Þ gauge
theory with coupling constant e5 on a circle of radius R.
Consistent with recent ideas about the WGC [23–26] and
the analysis of Ref. [5], we assume the 5D theory has a
tower of near-extremal charged particles, which leads to a
4D KK spectrum of the form

m2
n1;n2 ∼ ½n21e21 þ e22ðn2 − n1θÞ2�M2

Pl: ð18Þ

Here e21 ¼ e25=ð2πRÞ and e22 ¼ 2=ðRMPlÞ2 are the 4D
gauge couplings, and θ ≅ θ þ 1 is the axion. Assuming
a sufficiently large number of modes charged under each
Uð1Þ lie below the cutoff, we can approximate the sums
over n1 and n2 in (15) as integrals, giving

ð2πfÞ2 ≔ K ∼ ðe2=e1Þ2M2
Pl; ð19Þ

in agreement with tree-level dimensional reduction, where
we express the result in terms of the “axion decay
constant” f.
Assuming a particular mode has mass mn1;n2 ∼ ΛQG

when θ ¼ 0, what is the lightest this mode can become
under θ → θ þ Δθ? The ideal situation occurs when
n2 ≈ n1Δθ so that the second term in the mass formula (18)
becomes negligible after the shift. Setting m2

n1;n2 ∼
e22n

2
2M

2
Pl ∼ Λ2

QG at θ ¼ 0, we find a final mass of

m2
f ∼ e21n

2
1M

2
Pl ∼

�
MPl

2πfΔθ

�
2

Λ2
QG: ð20Þ

Thus, the mass of the lightest mode that begins above the
cutoff ΛQG is inversely proportional to the axion shift in
Planck units. For a modest super-Planckian traversal
2πfΔθ ∼ 10–100 MPl (as required for large-field axion
inflation), this mass is not very light.
To estimate the number of modes passing through the

cutoff as θ → θ þ Δθ, note that, for fixed n1, 2n1 modes
pass upwards or downwards through the cutoff over a
full period, Δθ ¼ 1. Thus, the total number of modes
passing through the cutoff is ΔN ∼ Δθ

P
n12n1∼

ΔθðΛQG=e1MPlÞ2. Comparing with the total number of
light modes, we obtain

ΔN
N

∼
2πfΔθ
MPl

: ð21Þ

Thus, for a Planckian field traversal an order-one fraction of
the modes will pass through the cutoff, and for a larger field
traversal almost all the modes will be recycled.
What does this mean for EFTand axion inflation? On the

one hand, we could integrate out all the modes with mass
e1MPl or above, obtaining an EFT with a lower cutoff but
with no apparent drama as the axion traverses a super-
Planckian distance. On the other hand, if we wish to
compute the axion potential using EFT, then we cannot
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take this approach, since in this example the axion potential
is generated by the Casimir energy of charged particles in
the 5D parent theory [27–29], whose masses start at e1MPl.
If we raise the cutoff to include some of these charged
particles in the EFT, then we once again face the twin issues
of modes emerging from the cutoff and becoming light and
a large fraction of the modes passing through the cutoff
during the axion traversal. (In the language of the 5D EFT,
these issues are related to the difficulty of imposing a
gauge-invariant cutoff on loops of charged particles.) Both
issues suggest that an EFT incorporating these modes is not
well controlled for a super-Planckian field excursion in the
absence of additional UV input.
Thus, there are potential subtleties in using an EFT (even

a string-theory-derived EFT) to compute the potential of an
axion over a very super-Planckian field range. Our argu-
ments suggest that these subtleties extend beyond the
extranatural context explored in Ref. [18] and to other
moduli besides axions. It remains to be seen whether these
subtleties are of critical importance in candidate large-field
models.
Modulus potential.—Above, we assumed a light modu-

lus that can be described within the EFT.We should test this
assumption: Supersymmetric theories can have exactly
massless moduli, but, more generally, do loops tend to
give moduli a large mass? If we sum up the loop corrections
to moduli masses from a tower of fermions, we find power-
divergent diagrams. Cutting these off at ΛQG, we have

δm2
mod ∼

X
njmn<ΛQG

m2
n

MD−2
Pl

ΛD−2
QG ∼

NðΛQGÞΛD
QG

MD−2
Pl

∼Λ2
QG: ð22Þ

However, in the presence of supersymmetry (SUSY),
contributions from scalars and their fermionic partners
approximately cancel to leave a remainder of the order
of the average SUSY-breaking splitting within the tower of
states:

δm2
modjSUSY ∼ hm2

boson −m2
fermioni: ð23Þ

Generically, without supersymmetry, loop corrections drive
the modulus mass to the cutoff ΛQG. Specific theories may
differ; e.g., a nonsupersymmetric theory compactified on a
circle has a radion modulus with a controlled (Casimir)
potential. The resolution of this puzzle is that tuning away
the cosmological constant in the parent theory in turn fine-
tunes the modulus potential of the lower-dimensional
theory; a c.c. of the naive size in the parent theory becomes
a modulus potential with curvature Λ2

QG in the daughter
theory. As another example, theories with no-scale struc-
ture can have a volume modulus lighter than the overall
SUSY-breaking scale [30–32]. Higher-dimensional sym-
metries (e.g., 10D type IIB) can cause cancellations that are
nonobvious in 4D. We leave a complete discussion for
future work.

Conclusions.—The sublattice WGC [23–25] and the
recently proposed towerWGC [26]—strengthened versions
of the weak gravity conjecture motivated by dimensional
reduction and evidence from the string theory—require an
infinite tower of light particles, closely linking them to
the swampland conjectures. In some cases, the connection
is direct: The gauge coupling g is related to the VEV of a
scalar modulus, and the g → 0 limit brings down a
single tower of light, charged particles, satisfying both
conjectures.
In other cases, the swampland conjectures strengthen the

sublattice WGC by demanding that a tower of particles can
be accessed within the EFT. For instance, in Ref. [5], we
observed that in some examples the WGC tower is
predicted to lie above ΛQG. A concrete case is an approx-
imately isotropic 4D compactification of the type IIB string
theory with gauge fields onD7 branes. The gauge coupling
g ∼ 1=ðMsRÞ2, so the WGC tower is at gMPl; the string
scale is lower, at g3=2MPl, but the Kaluza-Klein tower is
lower still, at g2MPl. The WGC tower is outside the low-
energy EFT, but the KK tower is not. It accounts for the
infinite distance in moduli space as g → 0 and the gen-
eration of strongly coupled gravity via the species bound.
This phenomenon, with multiple towers of particles becom-
ing light at different rates as one moves to infinity in moduli
space, can arise in a variety of examples.
We have argued that the assumption of a universal

strong-coupling scale for fields in quantum gravity can
serve as a more fundamental replacement for some of the
swampland conjectures. It is still important to put the most
basic aspects of these conjectures on a firmer footing: Can
we prove rigorously that moduli exist and that large-moduli
limits always send infinite towers of particles to zero mass?
These basic assumptions have a similar flavor to the
statement that quantum gravities have no global sym-
metries and deserve more attention.
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