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29INFN Sezione di Milano–Bicocca, I–20126 Milano, Italy
30Università di Milano–Bicocca, I–20126 Milano, Italy
31Southeast University (SEU), Nanjing, 210096, China

32INFN Sezione di Perugia, I–06100 Perugia, Italy
33Università di Perugia, I–06100 Perugia, Italy

34INFN Sezione di Pisa, I–56100 Pisa, Italy
35INFN TIFPA, I–38123 Povo, Trento, Italy
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We present high-statistics, precision measurements of the detailed time and energy dependence of the
primary cosmic-ray electron flux and positron flux over 79 Bartels rotations from May 2011 to May 2017
in the energy range from 1 to 50 GeV. For the first time, the charge-sign dependent modulation during solar
maximum has been investigated in detail by leptons alone. Based on 23.5 × 106 events, we report the
observation of short-term structures on the timescale of months coincident in both the electron flux and the
positron flux. These structures are not visible in the eþ=e− flux ratio. The precision measurements across
the solar polarity reversal show that the ratio exhibits a smooth transition over 830� 30 days from one
value to another. The midpoint of the transition shows an energy dependent delay relative to the reversal
and changes by 260� 30 days from 1 to 6 GeV.

DOI: 10.1103/PhysRevLett.121.051102

In this Letter, we present precision measurements of the
primary cosmic-ray electron flux, positron flux, and eþ=e−
flux ratio Re in the energy range from 1 to 50 GeV as a
function of Bartels rotation (27 days), from May 2011 to

May 2017, based on 23.5 × 106 electron and positron
events collected by the Alpha Magnetic Spectrometer
(AMS) aboard the International Space Station (ISS).
These data allow comprehensive studies of the energy
and charge-sign dependence of short-term effects on the
time scale of months, related to solar activity [1,2], and
long-term effects on the time scale of years, related to the
22 year cycle of the solar magnetic field [3].
The fluxes of interstellar charged cosmic rays are

thought to be stable on the time scale of decades [4–7].
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Time-dependent structures in the energy spectra are only
expected from the solar modulation [3] of interstellar
cosmic rays when they enter the heliosphere. Solar modu-
lation involves convective, diffusive, particle drift, and
adiabatic energy loss processes. Only particle drift induces
a dependence of solar modulation on the particle charge
sign [8]. Since electrons and positrons differ only in charge
sign, their simultaneous measurement offers a unique way
to study charge-sign dependent solar modulation effects.
Previous experiments have established that solar modula-
tion is charge-sign dependent [9–12]. The important differ-
ence to earlier studies [10,13–16] is the high statistics of the
data presented in this Letter which allow for the first time
precision measurements with a time resolution of one
month for particles with identical mass but opposite charge
sign. This measurement will continue for the entire solar
cycle (∼2024) and provide a comparison to earlier mea-
surements [16]. Our data were collected continuously
during the polarity reversal of the solar magnetic field,
which took place in the year 2013 [17], at the time of the
solar maximum in solar cycle 24. Therefore one expects
large charge-sign dependent effects on Re.
In addition to the long-term variations of cosmic-ray

fluxes related to the solar cycle, short-term structures in the
cosmic-ray proton flux [1,18] and helium flux [18] have
been observed, which could occasionally be related to
particular events in the solar activity. With the precision
data on electrons and positrons measured simultaneously
over an extended period of time, we are able to measure the
difference in time-dependent structures in the fluxes of
particles and antiparticles from solar effects for the first time.
The time structure of particle to antiparticle ratios like Re

is of particular importance as these ratios have been widely
used to search for new phenomena in primary cosmic rays
such as the existence of a nearby positron source [19] or
dark matter annihilation [20,21]. Model predictions can
only be compared properly to data from long-duration
experiments or experiments at different times when short-
term effects caused by the activity of the Sun and long-term
effects that impact solar modulation are taken into account.
Our precise data on the time and energy dependence of the
electron flux and positron flux at 1 AU provide new and
additional accurate input and detailed constraints on mod-
eling of the transport processes for charged cosmic rays
inside the heliosphere [22–25]. A comprehensive model of
the time-dependent solar modulation will have far-reaching
consequences for the understanding of currently unex-
plained features in cosmic-ray fluxes, such as the observed
rise of the positron fraction above 8 GeV [26], as well as for
other domains of astrophysics, such as the modeling of
galactic cosmic-ray propagation [27], the estimate of the
galactic cosmic-ray pressure, an important ingredient for
models of galaxy formation [28], and the interpretation of
possible anisotropies in the cosmic-ray arrival directions at
Earth [29].

Detector.—The AMS-02 detector consists of a perma-
nent magnet, nine planes of silicon tracker, a transition
radiation detector (TRD), four planes of time-of-flight
counters, an array of 16 anticoincidence counters, a ring
imaging Čerenkov detector (RICH), and an electromag-
netic calorimeter (ECAL). The AMS operates continuously
on the ISS and is monitored and controlled continuously
from the ground. A detailed description of the instrument
is found in Ref. [30]. Monte Carlo simulated events
were produced using a dedicated program developed by
the collaboration based on the GEANT-4.10.1 package [31].
The program simulates electromagnetic and hadronic
interactions of particles in the material of the AMS and
generates detector responses. The Monte Carlo event
samples have sufficient statistics such that they do not
contribute to the errors.
Data analysis.—The data analysis follows the procedure

used for our measurement of the time-averaged electron
and positron fluxes [32] with improved low-energy effec-
tive acceptance [33]. The fluxes of cosmic-ray positrons
and electrons for Bartels rotation i in the energy bin E of
width ΔE are given by

Φe�;iðEÞ ¼
Ne�;iðEÞ

Aeff;iðEÞTiðEÞϵtrigðEÞΔE
; ð1Þ

where Neþ;i and Ne−;i are the numbers of positrons and
electrons, respectively, Aeff;i is the effective acceptance, and
Ti is the exposure time in the given time bin. ϵtrig is the
trigger efficiency, which is found to be stable over time,
and is 100% above 3 GeV decreasing to 75% at 1 GeV.
The same energy binning as for Ref. [32] is used up to
49.33 GeV.
The effective acceptance is defined as

Aeff;iðEÞ ¼ AgeomϵðEÞ½1þ δðEÞ�ð1þ δ̂iÞ; ð2Þ

where Ageom ¼ 550 cm2 sr is the geometric acceptance, ϵ is
the selection and identification efficiency, and the product
Ageomϵ is determined by Monte Carlo simulation. The time-
independent function δðEÞ corrects for minor differences
between simulation and data and is determined in the same
way as in Ref. [32]. The absolute value of δðEÞ was found
to be< 4% over the entire energy range. The δ̂i account for
small time-dependent effects in the detector response and
vary at the level of ð0.0� 0.4Þ%.
The exposure time TiðEÞ is determined as a function of

energy for each Bartels rotation by counting the number
of livetime-weighted seconds at each location above the
geomagnetic cutoff [32], when the detector was in normal
operating conditions and, in addition, the AMS was
pointing within 40° of the local zenith and the ISS was
outside of the South Atlantic Anomaly. The function TiðEÞ
reaches a value of 80% of a Bartels rotation at energies
above 35 GeV and smoothly declines towards lower
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energies, due to the geomagnetic cutoff. It is 6% of a
Bartels rotation at 2 GeV. Below 1 GeV, the geomagnetic
cutoff does not allow us to resolve the time structure of
the fluxes.
To match with the high statistics, we have performed

extensive systematic studies as in Ref. [32]. These uncer-
tainties affect all time bins in the same way. The relative
systematic uncertainty on the flux is below 2.5% for both
electrons and positrons for all energies. The main contri-
bution to this small systematic error is from the uncertainty
on the effective acceptance for electrons and positrons at
energies below 2 GeV and from charge confusion for
positrons above 2 GeV. Charge confusion occurs when an
electron is reconstructed as a positron and vice versa; for
details see Ref. [32]. For all Bartels rotations and for all
energies, the systematic error on the positron flux is smaller
than the statistical error; for the electron flux this is the case
above 10 GeV.
The uncertainty on the absolute energy scale of the

ECAL [32] is 4.3% at 1 GeV, decreasing to 2% in the range
10–50 GeV. This is treated as an uncertainty of the bin
boundaries. The bin widths ΔE are chosen to be at least 2
times the energy resolution to minimize migration effects.
With the high statistics of six years, the algorithms used to
determine the energy calibration of the ECAL have been
optimized compared to Refs. [26,32] leading to energy-
dependent corrections < 1.5% of the energy scale.
The time stability of the energy scale is monitored using

the ratio E=p of the energy measured in the ECAL E to the
momentum measured in the tracker p. The momentum scale
is monitored by measurements of the proton mass using the
velocity measured by the RICH and the momentum mea-
sured by the tracker. The energy scale is found to be stable at
the level of 0.2% for all Bartels rotations and all energies.
This produces a negligible uncertainty on the fluxes and Re.
Most importantly, several independent analyses were

performed on the same data sample. The results of those
analyses are consistentwith the results presented in thisLetter.
Results.— The results on the time-dependent primary

cosmic-ray electron flux, positron flux, and their ratio Re
are provided in the Supplemental Material [34] as functions
of energy at the top of the AMS. The time-averaged
electron flux, positron flux, and the ratio Re are shown
in Fig. 1 and listed in Table I of the Supplemental Material
[34]. In Fig. 1, the points are placed horizontally at Ẽ
calculated for a flux ∝ E−3 [35]. The event selection criteria
in the analyses for the fluxes Φeþ , Φe− , and the ratio Re
were optimized independently, see Refs. [26,32]. This
accounts for the minute differences between Re given in
the tables and that calculated from Φeþ=Φe− . The improved
precision on Re is apparent from Table I of the
Supplemental Material [34].
To search for fine structures in the energy dependence of

the fluxes, the model given in Ref. [36] was compared to
the data for each Bartels rotation independently. The

positron data show no additional structure, see Fig. SM
1 in the Supplemental Material [34], but the electron data
reveal a model dependent residual structure in the energy
range between 2 and 3 GeV, see Fig. SM 2 [34], which is
stable in time and consistent with an additional smooth
break [37,38] in the electron spectral index γe− ¼
dðlogΦe−Þ=dðlogEÞ below 10 GeV (Fig. SM 3 [34]),
comparable to the local interstellar electron spectrum of
Ref. [39]. The fits of the extended model [36] to our data
yield an average χ2=d:o:f: ≈ 1 for all Bartels rotations and
no fine structures in the energy spectra were found.
To visualize the magnitude of the time variations of the

fluxes and of Re, the envelopes of all fitted curves are
displayed in Fig. 1 as shaded regions. The amplitude of the
shaded regions decreases with increasing energy. At high
energies, the statistical bin-to-bin fluctuations are larger
than the time variation. As seen in Fig. 1(c), the clear time
variation of Re is evidence for charge-sign dependent solar
modulation.
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FIG. 1. The time-averaged (a) electron flux, (b) positron flux,
and (c) ratio Re. The time-variation range is indicated by the
shaded regions, see text. The fit of the model in Refs. [36,37] to
the time-averaged data points is shown by the black curves. The
visible time variation of Re is evidence for charge-sign dependent
solar modulation.
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To study the time behavior in more detail, the fluxes are
shown in Fig. 2 as a function of time for five characteristic
energy bins. We find a clear evolution of the fluxes with time
at low energies that gradually diminishes towards high
energies. At the lowest energies, the amplitudes of both the
electron flux and the positron flux change by a factor of 3.
Both fluxes exhibit profound short- and long-term variations.
The short-term variations occur simultaneously in both fluxes
with approximately the same relative amplitude.
On the short term of Bartels rotations, several prominent

and distinct structures are observed. They are characterized
by minima, visible in both the electron flux and the positron
flux across the energy range below E≲ 10 GeV. These are
marked by dashed vertical lines in Fig. 2. Variations on
short timescales have been observed at different helio-
graphic latitudes in the combined proton and antiproton
flux and also in the combined electron and positron flux
[40]. A possible origin has been discussed [41].
In October 2011 and March 2012, there are sharp drops

in the fluxes, followed by a quick recovery. The March
2012 event coincides with a strong Forbush decrease
registered on March 8, 2012 [42].
Another drop occurred in August 2012; this was fol-

lowed by an extended recovery period.
For E≲ 10 GeV, May 2013 and April 2015 mark two

changes in the long-term trends of the fluxes: FromMay 2011
to May 2013, the fluxes of both species show a trend to
decreasewith time. In the period around July 2013 is the time
of the solar magnetic field reversal. From May 2013 to April
2015, the flux of electrons continues to decrease, but with
reduced slope, while the positron flux begins to increase.

Then, from April 2015 until May 2017, both fluxes rise
steeply. The difference of the rate of the increase is related to
the charge-sign dependent solar modulation [15,43].
Coincident changes in both the short-term and long-term

behavior have also been observed in our measurement of
the proton and helium fluxes [18].
At energies above 20 GeV, neither the electron flux nor

the positron flux exhibits significant time dependence.
The high statistics and continuous data presented in this

Letter allow for the first time the detailed analysis of the time
evolution of the spectral indices γe� ¼ dðlogΦe�Þ=dðlogEÞ
[32]. They are displayed at a characteristic energy of 10 GeV
in Fig. SM 4 [34]. We observe that the spectral indices for
both the electrons and the positrons harden continuously
with different slopes until April 2015 and then continue to
soften with an identical slope. The prominent and distinct
short-term structures discussed above are visible as a hard-
ening in the spectral indices.
The long-term time structure of the data in Fig. 2 shows

that the changes in relative amplitude are different for
electrons and positrons. To quantify this effect, we use the
ratio Re, shown in Fig. 3. In Fig. SM 5 [34], we show our
results on Re for all energy bins up to 5 GeV.
In Re, the important, newly discovered short-term

variations in the fluxes largely cancel, and a clear overall
long-term trend appears. At low energies, Re is flat at first,
then smoothly increases after the time of the solar magnetic
field reversal, to reach a plateau at a higher amplitude.
During the extraordinarily quiet solar minimum

period from 2006 to 2011, the energy and time dependence
of various cosmic-ray measurements [44] including Re
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(Fig. SM 6 [34]) are well reproduced by advanced
numerical solar modulation models [22]. But for the
following years covered by the new data presented in this
Letter, important and large systematic discrepancies are
observed in particular in Re (Fig. SM 6 [34]), which is
sensitive to charge-sign dependent effects in the solar
modulation process of galactic cosmic rays. Therefore,
restricted to the time interval covered here, we use a model-
independent approach to extract the energy dependence of
the quantities that characterize the observed transition in
Re. With a set of four parameters, the 3871 independent Re
measurements as a function of energy and time can be
described well with a logistic function,

Reðt; EÞ ¼ R0ðEÞ
"
1þ CðEÞ

exp ð− t−t1=2ðEÞ
ΔtðEÞ=Δ80

Þ þ 1

#
: ð3Þ

At a given energy E, the time dependence is related to three
parameters in the function: the amplitude of the transition C,
the midpoint of the transition t1=2, and the duration of the
transition Δt. We choose Δ80 ¼ 4.39, such that Δt is the
time it takes for the transition to proceed from 10% to 90% of
the change in magnitude. The results of fitting Eq. (3) for
each energy bin are shown in Fig. 4. We obtain χ2=d:o:f:≈1
for all fits.
The parameters t1=2 and Δt can only be determined

at low energies, where the amplitude of the transition is
large, see Fig. 3. As shown in Fig. 4(a), the transition
duration Δt is independent of energy, and we obtain a value
of 830� 30 days.
Figure 4(b) shows the energy dependence of the delay

t1=2 which is well parametrized by the formula

t1=2ðEÞ − trev ¼ τðE=GeVÞρ; ð4Þ

where we choose trev to be the effective time of the reversal
of the solar magnetic field. For the value of trev, we use
July 1, 2013, the center of the period without well-defined
polarity [17]. The parameters used to describe the time and
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energy dependence of Re in Eqs. (3) and (4) are illustrated
in Fig. SM 7 [34]. A fit of Eq. (4) yields the parameter
ρ ¼ −0.33� 0.04ðstatÞþ0.08

−0.15ðsystÞ and the amplitude τ ¼
580� 19ðstatÞ � 136ðsystÞ days, and the value of t1=2
changes by 260� 30 days from 1 to 6 GeV. The systematic
uncertainties are due to the uncertainty in trev. This is an
important and unexpected energy dependence of t1=2 and
reflects the different response of cosmic-ray particles and
antiparticles to changing modulation conditions.
To study the amplitude C in Fig. 4(c), we have fixed Δt to

its average value of 830 days and we use the value of t1=2
calculated from Eq. (4) for energies above 6 GeV. At high
energies, the fit result for the amplitude depends only weakly
on the choice of thevalues forΔt and t1=2.As seen inFig. 4(c),
the amplitude C is close to 1 at E ¼ 1 GeV and decreases
smoothly with energy. This is in qualitative agreement with
the expectation from solar modulation models including drift
effects [41] and with the results from Refs. [13–16]. Above
20 GeV, the amplitude is consistent with zero.
In conclusion, for the first time, the charge-sign depen-

dent modulation during solar maximum has been inves-
tigated in detail by leptons alone. We observe prominent,
distinct, and coincident structures in both the positron flux
and the electron flux on a time scale of months. These
structures are not visible in the eþ=e− flux ratio. We also
observe the existence of a long-term feature in the eþ=e−
flux ratio, namely, a smooth transition from one value to
another, after the polarity reversal of the solar magnetic
field. The duration of the transition is measured to be 830�
30 days, independent of energy. The transition magnitude is
decreasing as a function of energy, consistent with expect-
ations from solar modulation models including drift effects.
The midpoint of the transition relative to the polarity
reversal of the solar magnetic field changes by 260� 30
days from 1 to 6 GeV. These high-statistics, precision data
on positrons and electrons provide accurate input to the
understanding of solar modulation.

We thank former NASA Administrator Daniel S. Goldin
for his dedication to the legacy of the ISS as a scientific
laboratory and his decision for NASA to fly AMS as a DOE
payload. We also acknowledge the continuous support of
the NASA leadership including Charles Bolden and
William H. Gerstenmaier and of the JSC and MSFC flight
control teams which has allowed AMS to operate optimally
on the ISS for over six years. We are grateful for the support
of Jim Siegrist and his staff of the DOE including resources
from the National Energy Research Scientific Computing
Center under Contract No. DE-AC02-05CH11231. We also
acknowledge the continuous support from MIT and its
School of Science, Michael Sipser, Marc Kastner, Ernest
Moniz, Richard Milner, and Boleslaw Wyslouch. Research
supported by São Paulo Research Foundation (FAPESP)
Grants No. 2014/19149-7, No. 2015/50378-5, and No. 2016/
10222-9, Brazil; CAS, NSFC, MOST, the provincial

governments of Shandong, Jiangsu, Guangdong, and the
China Scholarship Council, China; Action H2020 MSCA-
IF-2015 under Grant No. 707543-MAtISSE, European
Union; the Finnish Funding Agency for Innovation
(Tekes) Grants No. 40361/01 and No. 40518/03 and the
Academy of Finland Grant No. 258963, Finland; CNRS/
IN2P3, CNES, Enigmass, and the ANR, France; Pascale
Ehrenfreund, DLR under Grant No. 50OO1403 and JARA-
HPC under Project No. JARA0052, Germany; INFN and
ASI under ASI-INFN Agreements No. 2013-002-R.0 and
No. 2014-037-R.0, Italy; CHEP and NRF under Grants
No. NRF-2009-0080142 and No. NRF-2012-010226 at
Kyungpook National University and No. NRF-2013-
004883 at Ewha Womans University, Korea; the Consejo
Nacional de Ciencia y Tecnología and UNAM, Mexico;
FCT under Grant No. PTDC/FIS/122567/2010, Portugal;
CIEMAT, IAC, CDTI, and SEIDI-MINECO under Grants
No. ESP2015-71662-C2-(1-P/2-P), No. SEV-2015-0548,
No. MDM-2015-0509, and No. RyC-2013-14660, Spain;
the Swiss National Science Foundation (SNSF), federal and
cantonal authorities, Switzerland; Academia Sinica and the
Ministry of Science and Technology (MOST) under Grants
No. 103-2112-M-006-018-MY3, No. 105-2112-M-001-003,
and No. CDA-105-M06, former Presidents of Academia
Sinica Yuan-Tseh Lee and Chi-Huey Wong and former
Ministers of MOST Maw-Kuen Wu and Luo-Chuan Lee,
Taiwan; the Turkish Atomic Energy Authority under
Grant No. 2017TEAK(CERN)A5.H6.F2-15, Turkey; and
NSF Grants No. 14255202 and No. 1551980, Wyle
Laboratories Grant No. 2014/T72497, and NASA NESSF
Grant No. HELIO15F-0005, USA. We gratefully acknowl-
edge the strong support from CERN including Rolf-Dieter
Heuer and Fabiola Gianotti, from the CERN IT department
and Bernd Panzer-Steindel, and from the European Space
Agency including Johann-DietrichWörner and Simonetta Di
Pippo. We are grateful for important physics discussions
with Fiorenza Donato, Jonathan Ellis, Jonathan Feng, Igor
Moskalenko, Michael Salamon, Subir Sarkar, Joachim
Trümper, Michael S. Turner, and Steven Weinberg.

aAlso at ASI, I–00133 Roma, Italy.
bAlso at ASI Space Science Data Center (SSDC), I–00133
Roma, Italy; Present address: University of Sassari,
I–07100 Sassari, Italy.

cAlso at Wuhan University, Wuhan, 430072, China.
dAlso at Sun Yat–Sen University (SYSU), Guangzhou,
510275, China.

eAlso at ASI Space Science Data Center (SSDC), I–00133
Roma, Italy.
fAlso at ASI Space Science Data Center (SSDC), I–00133
Roma, Italy; Present address: INFN Sezione di Trieste,
I–34149, Trieste, Italy.
gAlso at Nankai University, Tianjin 300071, China.
hAlso at Institute of Theoretial Physics, Chinese Academy of
Sciences, Beijing, 100190, China.

PHYSICAL REVIEW LETTERS 121, 051102 (2018)

051102-7



[1] H. V. Cane, Space Sci. Rev. 93, 55 (2000).
[2] M. S. Potgieter, J. A. Le Roux, L. F. Burlaga, and F. B.

McDonald, Astrophys. J. 403, 760 (1993).
[3] M. S. Potgieter, Living Rev. Solar Phys. 10, 3 (2013).
[4] A.W. Strong and I. V. Moskalenko, Astrophys. J. 509, 212

(1998).
[5] C. Evoli, D. Gaggero, A. Vittino, G. Di Bernardo, M. Di

Mauro, A. Ligorini, P. Ullio, and D. Grasso, J. Cosmol.
Astropart. Phys. 02 (2017) 015.

[6] D. Maurin, F. Donato, R. Taillet, and P. Salati, Astrophys. J.
555, 585 (2001).

[7] A. Putze, L. Derome, and D. Maurin, Astron. Astrophys.
516, A66 (2010).

[8] M. S. Potgieter, Adv. Space Res. 53, 1415 (2014).
[9] W. R. Webber, J. C. Kish, and D. A. Schrier, Proceedings

of the 18th International Cosmic Ray Conference, Vol. 3,
Bangalore, India (Tata Institute, Mumbai, India, 1983).

[10] J. M. Clem, D. P. Clements, J. Esposito, P. Evenson, D.
Huber, J. L’Heureux, P. Meyer, and C. Constantin,
Astrophys. J. 464, 507 (1996).

[11] K. Abe et al., Phys. Lett. B 670, 103 (2008).
[12] O. Adriani et al., Phys. Rev. Lett. 116, 241105 (2016).
[13] B. Heber et al., J. Geophys. Res. 107, 1274 (2002).
[14] S. E. S. Ferreira and M. S. Potgieter, Astrophys. J. 603, 744

(2004).
[15] B. Heber, A. Kopp, J. Gieseler, R. Müller-Mellin, H.

Fichtner, K. Scherer, M. S. Potgieter, and S. E. S. Ferreira,
Astrophys. J. 699, 1956 (2009).

[16] B. Heber, Space Sci. Rev. 176, 265 (2013).
[17] X. Sun, J. T. Hoeksema, Y. Liu, and J. Zhao, Astrophys. J.

798, 114 (2015).
[18] M. Aguilar et al. (AMS Collaboration), preceding Letter,

Phys. Rev. Lett. 121, 051101 (2018).
[19] For example, I. Cholis and D. Hooper, Phys. Rev. D 88,

023013 (2013).
[20] There are many models for the origin and propagation of

cosmic rays. An overview and further references are given,
e.g., in a recent review by R. Cowsik, Annu. Rev. Nucl. Part.
Sci. 66, 297 (2016).

[21] M. Cirelli, D. Gaggero, G. Giesen, M. Taoso, and A.
Urbano, J. Cosmol. Astropart. Phys. 12 (2014) 045.

[22] N. Tomassetti, M. Orcinha, F. Barao, and B. Bertucci,
Astrophys. J. Lett. 849, L32 (2017).

[23] V. Di Felice, R. Munini, E. E. Vos, and M. S. Potgieter,
Astrophys. J. 834, 89 (2017).

[24] M. S. Potgieter and E. E. Vos, Astron. Astrophys. 601, A23
(2017).

[25] R. Manuel, S. E. S. Ferreira, and M. S. Potgieter, Sol. Phys.
289, 2207 (2014).

[26] L. Accardo et al., Phys. Rev. Lett. 113, 121101 (2014).
[27] A.W. Strong, I. V. Moskalenko, and V. S. Ptuskin, Annu.

Rev. Nucl. Part. Sci. 57, 285 (2007).
[28] M. Jubelgas, V. Springel, T. Enßlin, and C. Pfrommer,

Astron. Astrophys. 481, 33 (2008).
[29] M. Zhang, P. Zuo, and N. Pogorelov, Astrophys. J. 790, 5

(2014).
[30] A. Kounine, Int. J. Mod. Phys. E 21, 1230005 (2012); S.

Rosier-Lees, Proceedings of Astroparticle Physics TEVPA/
IDM, Amsterdam, 2014 (unpublished); S.Ting,Nucl. Phys.B,

Proc. Suppl. 243–244, 12 (2013); S.-C. Lee, Proceedings
of the 20th International Conference on Supersymmetry
and Unification of Fundamental Interactions (SUSY 2012),
Beijing, 2012 (unpublished); M. Aguilar, Proceedings of the
XL InternationalMeeting onFundamental Physics, Centro de
Ciencias de Benasque Pedro Pascual, 2012 (unpublished); S.
Schael, Proceedings of the 10th Symposium on Sources and
Detection of Dark Matter and Dark Energy in the Universe,
Los Angeles, 2012 (unpublished); B. Bertucci, Proc. Sci.,
EPS-HEP (2011) 67; M. Incagli, AIP Conf. Proc. 1223, 43
(2010); R. Battiston, Nucl. Instrum.Methods Phys. Res., Sect.
A 588, 227 (2008).

[31] J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006); S.
Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect.
A 506, 250 (2003).

[32] M. Aguilar et al., Phys. Rev. Lett. 113, 121102 (2014).
[33] At low energies, multiple scattering distorts the particle

trajectory extrapolated from the tracker into the TRD. We
improve the reconstruction of the trajectory by incorporating
the coordinate measurements from the TRD. This increases
the effective acceptance by 40% at 1 GeV, and by 10%
at 5 GeV. Above 8 GeV the improvement is negligible. N.
Zimmermann, Ph.D. thesis, RWTH Aachen University (to
be published); See also M. Graziani, Ph.D. thesis, Università
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