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We investigate numerically and analytically the heating process in ergodic clusters of interacting spins
1=2 subjected to periodic pulses of an external magnetic field. Our findings indicate that there is a threshold
for the pulse strength below which the heating is suppressed. This threshold decreases with the increase of
the cluster size, approaching zero in the thermodynamic limit, yet it should be observable in clusters with
fairly large Hilbert spaces. We obtain the above threshold quantitatively as a condition for the breakdown
of the golden rule in the second-order perturbation theory. It is caused by the phenomenon of dynamic
localization.
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The dynamics of many-particle quantum systems under
periodic perturbations is a fascinating subject that has
recently attracted renewed attention in various contexts.
Examples include solid-state nuclear magnetic resonance
(NMR) in the presence of a continuously applied radio
frequency field [1,2], dynamics of ultracold atoms in the
presence of oscillating laser potential [3], responses of
electron-nuclear systems to optical pumping [4], Floquet
topological insulators [5–7], and laser-driven multiferroics
[8]. Periodic driving of qubit systems is also involved in
proposals to engineer quantum simulators [9]. An impor-
tant fundamental issue in this general context is to identify
peculiarly quantum behavior under periodic driving [10]. A
relevant quantum phenomenon here is dynamic localization
(DL), which is the time-domain analog of Anderson
localization [11–13]. DL is well understood for systems
with one or a few degrees of freedom, such as a kicked
quantum rotator [14–21]. The current effort is to understand
the applicability of DL to many-particle systems.
DL in many-particle systems, if it occurs, would imply

that the system stops absorbing energy, which, in turn,
would be contrary to the continuous absorption picture
based on the standard linear response theory [22]. On the
other hand, the absence of the continuous energy absorp-
tion is often implied when the system is subjected to fast
and strong periodic driving. In this case, the often-used
framework is the average Hamiltonian theory, which can be
justified by the Magnus expansion [23], which, in turn, has
unclear applicability limits.
A lot of attention in recent years has been focused on the

response of systems with strong spatial disorder to periodic
driving [24–26]. Various studies [27–31] converged to the
conclusion that systems that exhibit many-body localiza-
tion without periodic driving can also exhibit many-body

dynamical localization under periodic driving, when the
driving strength is not too large. We, on the other hand, are
primarily interested in the periodic driving of the systems,
which are ergodic (i.e., thermalizable) without driving.
If one takes an ergodic isolated many-particle quantum

system and starts kicking it, then one would reasonably
expect (on the basis of the second law of thermodynamics)
that the system absorbs energy after each kick, and there-
fore, the temperature of the system gradually increases
without any limitation from above. If the time delay
between the kicks is very long, one should further expect
that it does not matter whether the kicks are strictly periodic
in time or not. However, it has been shown in our previous
numerical investigation that, surprisingly, the latter expect-
ation does not hold for a system containing 16 spins 1=2
[32]. We found that the heating caused by the periodic kicks
with very long delays was asymptotically much slower than
that caused by slightly aperiodic kicks. We attributed the
above difference to DL. The system of 16 spins 1=2 has 216

quantum levels, leading one to suspect that the above
quantum effects might survive in the thermodynamic limit.
Later studies, however, arrived at the conclusion that the
weak periodic driving of macroscopic ergodic systems
leads to stationary states essentially indistinguishable from
the infinite temperature state [27,33]. Such a conclusion is
also supported in the present Letter. Yet, even in such a
case, a practically important question remains concerning
the size dependence of the DL effects. This question has
also been discussed in the literature [34], but so far no
quantitative criterion for the onset of dynamical localization
as a function of the system size and the strength of the
perturbation has been formulated. The present Letter aims
at filling this gap. We develop a golden-rule-like theory
of heating under the periodic driving and formulate the
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condition for the breakdown of that theory as a function of
cluster size and perturbation strength.We verify this criterion
by direct numerical simulations. The above breakdown is
accompanied by the emergence of quantum corrections that
can be detected through the suppression of heating under
periodic driving when compared with aperiodic driving. We
propose that the above difference can be used in practice to
diagnose the sizes of quantum nanoclusters.
We consider a quantum spin-1=2 XXZ chain subjected to

periodic pulses of external magnetic field. The system is
governed by the Hamiltonian

HðtÞ ¼
XNs

i¼1

ðJxSxi Sxiþ1 þ JyS
y
i S

y
iþ1 þ JzS

z
iS

z
iþ1Þ

þ
XNs

i¼1

hzi S
z
i þ hxðtÞ

XNs

i¼1

Sxi ; ð1Þ

where Ns is the total number of spins, Sαi ðα ¼ x; y; zÞ are
the spin operators on the ith lattice site, and Jα are
the nearest-neighbor coupling constants with values
Jx ¼ Jy ¼ −1 and Jz ¼ 2 chosen such as to mimic the
NMR experiments in solids [1], hzi are the small static
magnetic fields randomly chosen from the interval
ð−0.2; 0.2Þ, and finally, hxðtÞ is the external magnetic field
along the x direction, which is switched on with the large
amplitude hP ¼ 10 for a very short time ton ∼ 0.01 and then
switched off for a very long time toff ∼ 100—see the sketch
in Fig. 1. We set ℏ ¼ kB ¼ 1.
The above setting is such that, during each pulse, the

perturbation term dominates the dynamics; yet, due to the
very small duration of the pulse, the overall effect of
the perturbation is very small (hPton ≪ 1). We have used a
similar setting in Ref. [32]. The only difference now is the
addition of small disordered local fields hzi , which break the
translational invariance of the Hamiltonian and hence make
the entire Hilbert space of 2Ns states connected by the
perturbation. In Ref. [32] the size of the connected blocks
in the Hilbert space was smaller than 2Ns by a factor of
roughly Ns, which created conditions more favorable to
DL [35].
Following Ref. [32], let us illustrate the DL effect by

comparing the heating process in our system under periodic
and aperiodic pulses. We do this by exactly diagonalizing
the Hamiltonian (1) up to 16 spins. Figure 2 presents the
evolutions of average energy Eav per spin for spin chains of
different length initially put either in the ground state of

Hamiltonian Hoff [Figs. 2(a) and 2(b)], or in the thermal
state [35] with temperature T ¼ 1 [Figs. 2(c) and 2(d)].
Figures 2(a) and 2(c) present respective results for a series
of slightly aperiodic pulses with toff randomly chosen in
the range 100� 10. In this case, the heating processes for
different Ns all exhibit the same heating per spin towards
the infinite temperature limit. In contrast, significant
differences between different Ns arise in Figs. 2(b) and
2(d) representing the behavior under periodic driving. In
particular, we see that the infinite temperature regime
associated with Eav=Ns ¼ 0 is not reached by clusters of
size Ns ¼ 13 and below.
In the rest of this Letter, we develop a theory of the above

DL effect. We only consider periodically pulsed hxðtÞ with
period T ≡ ton þ toff , where toff ¼ 100.
Let us denote the initial wave function as Ψ0. After

applying n periodic pulses, the system evolves to a state
Ψn ¼ UðT ÞnΨ0, where UðT Þ is the time evolution oper-
ator, which is related to a time-independent effective
Floquet Hamiltonian Heff as

UðT Þ ¼ e−iHoff toffe−iHonton ≡ e−iHeffT ; ð2Þ

where Hon and Hoff correspond to Hamiltonian (1) with
hx ¼ hP and hx ¼ 0, respectively. We also introduce
Floquet phase operator Φ≡HeffT , confining its eigenval-
ues ϕμ in the range of ½0; 2πÞ, and then define the Floquet
quasienergies (eigenvalues ofHeff ) as fεμ≡ϕμ=T g, which
fall into the “first Floquet zone” ½0; EF), where
EF ≡ 2π=T .
Let us now describe qualitatively the situation of

“normal” heating. In this case, an initial eigenstate φ0 of
the Hamiltonian Hoff with eigenenergy E0 becomes

FIG. 1. Schematic plot of magnetic field pulses. (a) (b)

(c) (d)

FIG. 2. Average energy per spin for (a),(c) aperiodic and (b),(d)
periodic pulse sequences. The initial state in panels (a) and (b) is
the ground state; in panels (c) and (d) it is the thermal state with
T ¼ 1. The inset in (d) shows the asymptotic long-time values of
Eav=Ns under periodic driving from the ground state (green
squares) and the thermal state (red diamonds).
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effectively coupled to other eigenstates φk of Hoff , with
eigenenergies Ek forming narrow bands around values
E0 þ nEF, where n is an integer number [see Fig. 3(a)].
The width of these bands Γ is simultaneously the inverse
lifetime of the initial eigenstate φ0 under the periodic
perturbation, and it also controls the heating rate. In the
Floquet theory, one can consider the spectral density
ρFðωÞ≡P

μjhφ0jψμij2δðωþ E0 − εμÞ associated with
the decomposition of the initial state φ0 in terms of
Floquet eigenstates ψμ [36,37]. Here E0 ≡ E0modEF.
The shape of this spectral density can be well
approximated by the Breit-Wigner (BW) formula,
ρFðωÞ ¼ ð1=2πÞΓ=ðω2 þ Γ2=4Þ. In Fig. 3(b), we show
the above spectral density averaged over all eigenstates
ofHoff , ρ̄F, for a 14-spin chain. It can be perfectly fitted by
a superposition of a δ-function peak at ω ¼ 0 (originating
from uninteresting diagonal terms in the perturbation) and
the BW distribution. At the same time, it can be shown
analytically from a golden-rule-like calculation [35] that, in
our setting, the value of Γ averaged over all initial
eigenstates is

Γ ¼ h2Pt
2
onNs

4T
: ð3Þ

In Fig. 3(c), we compare the analytical result (3) with the
value of Γ extracted from the numerically computed ρ̄F for
various ton and find a very good agreement.
In the Floquet picture, the process of heating for the

initial wave function φ0 is simply the dephasing between
different Floquet eigenstates participating in the expansion
of φ0. The participating Floquet eigenstates can, in turn, be
decomposed into the eigenstates of the Hamiltonian Hoff ,
forming the energy bands shown in Fig. 3(a), which sample
the entire νðEÞ. As a result, the participating eigenstates of
Hoff fairly represent the infinite-temperature state, even
through they constitute only a small fraction Γ=EF of all
eigenstates of Hoff .
In general, only a minority of the eigenstates of Hoff

belonging to the above mentioned energy bands are directly

coupled to φ0 by the perturbation HP ≡ hxðtÞ
PNs

i¼1 S
x
i . At

the same time, only the minority of the eigenstates of Hoff
directly coupled to φ0 would belong to the above energy
bands. We formulate the criterion for the normal heating as
a self-consistency condition on the validity of the golden-
rule formula (3) for the BW width. Namely, in order for the
normal heating to occur, it is necessary that, for a typical
eigenstate φ0 of Hamiltonian Hoff , there be at least one
other eigenstate φ1 (with energy E1) directly coupled to φ0

by a typical perturbation matrix element, such that
E1 ≡ E1 mod EF falls within the window E0 � Γ=2,
where Γ is obtained from the golden-rule formula (3).
We then associate the onset of DL with the violation of

the above criterion; i.e., DL sets in when the golden-rule-
predicted Γ is too small, and as a result, none of the
eigenstates of Hoff directly coupled to a typical φ0 falls,
after backfolding to the first Floquet zone, into the BW
window E0 � Γ=2.
The above DL criterion addresses typical eigenstates of

Hoff . Therefore, it is applicable to the initial conditions
close to the infinite-temperature limit, where the density of
states of Hoff is the highest, and hence the tendency to DL
is the weakest. From this perspective, the criterion is,
certainly, a sufficient condition for the onset of DL at lower
temperatures. It is also possibly the necessary condition
[35]: In finite clusters with ergodic Hamiltonians, if the
analog of our DL criterion is satisfied for low-temperature
states φ0, but high-temperature states are dynamically
delocalized, then low-temperature states are still likely to
“leak” to the high-temperature range due to the higher-
order effects of the perturbations byHon not included in the
second-order perturbation theory behind Eq. (3). In this
scenario, the stronger tendency to DL at lower temperatures
only delays the onset of normal heating during the
prethermalization stage [34,38–44].
Let us now apply the above criterion to the spin system

described by Hamiltonian (1). Since both Hoff and HP are
local in the sense that they are sums of local terms, the
perturbation HP does not have significant matrix elements

(a) (b) (c)

FIG. 3. (a) Schematic plot of the density of energy states νðEÞ for Hoff with the indication of energy bands of width Γ coupled to the
initial eigenstate of energy E0 in the process of normal heating by periodic pulses. Adjacent bands are separated by energy EF.
(b) Average spectral density ρ̄FðωÞ (blue dots) for a chain of 14 spins periodically driven by pulses with ton ¼ 0.02 and toff ¼ 100. The
red line is the fit by the BW distribution and a δ-function peak at ω ¼ 0. (c) BW width Γ for a 14-spin chain with toff ¼ 100 and different
ton. The red circles are obtained numerically from ρ̄FðωÞ; the blue line is from Eq. (3).
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coupling the eigenstates of Hoff separated by an energy
much larger than a typical one-particle energy ofHoff , which
can be estimated as the root-mean-squared value of the local
field: hrms ¼ ½NNNðJ2xhS2xi þ J2yhS2yi þ J2zhS2ziÞ�1=2 ¼

ffiffiffi
3

p
,

where NNN ¼ 2 is the number of nearest neighbors for
each spin. If we represent HP in the eigenbasis of an
ergodic Hamiltonian Hoff , we expect to get a band random
matrix which has its nonzero elements located within a
diagonal band with a typical half-width of hrms. For
our spin system, the total number of states per unit
energy interval, N , can be approximated as a Gaussian,
N ðEÞ ≈ ð2Ns=

ffiffiffiffiffiffi
2π

p
σEÞ exp ð−E2=2σ2EÞ, where σE ≈

½NsNNNðJ2xhS2ixihS2jxi þ J2yhS2iyihS2jyiþJ2zhS2izihS2jziÞ�1=2 ¼ffiffiffiffiffiffiffiffi
3Ns

p
=2 is the root-mean-squared value of the total energy.

Thus, the relative number of nonzero matrix elements
of HP in the eigenbasis of Hoff can be estimated as
hrms=σE ¼ 2=

ffiffiffiffiffiffi
Ns

p
.

Since the Hamiltonian Hoff is time independent, it can
also be considered as being periodic with period T . The
perturbation problem can now be treated in the Floquet
quasienergy representation. After the eigenenergies Ek of
Hoff are folded into the first Floquet zone using relation
Ek ≡ Ek modEF, and then the respective eigenstates are
ordered according to the value of Ek, the perturbation HP
becomes a sparse random matrix, where the nonzero
elements are uniformly distributed over the entire matrix.
This is because hrms ≫ EF. Thus, in each column (or line)
of the matrix HP, the total number of nonzero elements is
NV ≈ 2Ns × 2=

ffiffiffiffiffiffi
Ns

p
. Thus, in the first Floquet zone, the

typical distance between the quasienergies of two unper-
turbed neighboring states coupled by nonzero elements
of HP is

ΔE ≈
EF

NV
¼ EF

ffiffiffiffiffiffi
Ns

p
2Ns × 2

: ð4Þ

According to our criterion, normal heating takes place
when, for a typical unperturbed state φ0, the energy window
E0 � Γ=2 contains at least one other state φ1 directly
coupled to φ0. This implies the condition Γ=ΔE ≥ 2, from
which, using Eqs. (3) and (4), we find the threshold value

ton ¼
2

hP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

2Ns
ffiffiffiffiffiffi
Ns

p
s

: ð5Þ

To test the crossover criterion (5), we numerically
calculate the asymptotic average energy in the long-time
limit [35] E∞

av ≡P
μjhφ0jψμij2hψμjHoff jψμi for different

ton and Ns with different initial wave functions φ0. Each φ0

represents an eigenstate of Hoff with energy E0
av≡

hφ0jHoff jφ0i. In Fig. 4(a), the ratio E∞
av=E0

av averaged
over a representative ensemble is plotted as a function of
ton. The ensemble consists of three statistical samples, each

including ∼1% of 2Ns eigenstates of Hoff with the initial
E0
av selected in the vicinity of three energies 1

4
Eg, 12Eg, and

Eg, where Eg is the (negative) energy of the ground state.
With such a choice, we avoid large statistical noise near
E0
av ¼ 0. We find that all three samples exhibit nearly the

same dependence of E∞
av=E0

av on ton [35], which implies that
this dependence is representative of a larger ensemble of
randomly chosen initial eigenstates of Hoff . In turn, the
ratio E∞

av=E0
av for the latter characterizes the heating process

close to T ¼ ∞.
For each Ns in Fig. 4(a), the ratio E∞

av=E0
av decreases

nearly exponentially with increasing ton. Normal heating
corresponds to E∞

av=E0
av ¼ 0, while completely suppressed

heating means E∞
av=E0

av ¼ 1. We then define the value of ton
for the crossover between normal heating and DL as the one
givingE∞

av=E0
av ¼ 0.5, and we plot this value as a function of

Ns in Fig. 4(c). The result exhibits a good agreement with
the analytical criterion (5) plotted as a line in Fig. 4(c). Also
plotted in Fig. 4(c) are the results for the ensemble of initial
thermal states with T ¼ 1 [35]. In accordance with our
earlier discussion, we attribute the small difference between
the results for T ¼ 1 and T ¼ ∞ to the longer pretherm-
alization stage expected for finite temperatures [35].
An additional piece of evidence that the above suppres-

sion of heating is related to DL is the statistics of spacings s

(a) (b)

(c)

FIG. 4. (a) Ratio E∞
av=E0

av under periodic driving for different Ns
as a function of ton averaged over the ensemble of initial states,
which are single eigenstates ofHoff [35]. Symbols show numerical
results; lines denote exponential fits. (b) Probability distributions of
spacings s between Floquet quasienergies for a 14-spin chain with
different ton. Blue solid line: Poission distribution. Blue dashed
line: Wigner-Dyson distribution. (c) Phase diagram of the cross-
over from normal to suppressed heating as a function of the pulse
duration ton and the number of spins Ns. Dashed line: Critical
condition given by Eq. (5). Symbols are obtained numerically by
the condition E∞

av=E0
av ¼ 0.5. Green balls are obtained from panel

(a); purple squares are obtained for the initial thermal state with
T ¼ 1.
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between adjacent Floquet quasienergies. In Fig. 4(b), we
plot the statistics for Ns ¼ 14 and three values of ton across
the crossover from the normal heating to the suppressed
heating, and we observe the simultaneous crossover from
the Wigner-Dyson to the Poisson statistics.
The threshold (5) for the suppression of heating can be

used to determine the number of spins in a nanocluster.
For a finite cluster, by changing either ton or the perturba-
tion strength, one can observe the onset of significant
differences of the heating response of the system to periodic
and aperiodic perturbations of equal strengths, and then
estimate Ns using Eq. (5). Given the exponential depend-
ence on Ns in Eq. (5), such an estimate is supposed to be
quite accurate.
In conclusion, we formulated the criterion for the onset

of quantum suppression of heating in finite clusters, tested
this criterion numerically, and illustrated that it is related
to the phenomenon of DL. We further proposed that it can
be used to diagnose the size of finite spin clusters. Our
criterion should be generalizable to a broader class of
systems and perturbations.
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