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We provide a unified renewal approach to the problem of random search for several targets under
resetting. This framework does not rely on specific properties of the search process and resetting procedure,
allows for simpler derivation of known results, and leads to new ones. Concentrating on minimizing the
mean hitting time, we show that resetting at a constant pace is the best possible option if resetting helps at
all, and derive the equation for the optimal resetting pace. No resetting may be a better strategy if without
resetting the probability of not finding a target decays with time to zero exponentially or faster. We also
calculate splitting probabilities between the targets, and define the limits in which these can be manipulated
by changing the resetting procedure. We moreover show that the number of moments of the hitting time
distribution under resetting is not less than the sum of the numbers of moments of the resetting time
distribution and the hitting time distribution without resetting.
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Introduction.—The first passage processes are ubiqui-
tous in nature and lie in the heart of physics of complex
systems, where rare events dominate the long-time dynam-
ics [1–4]. Similar processes dominate searching for ran-
domly located targets, which is a central problem in
biological applications on all scales, from the smallest in
gene regulation [5] to the largest in movement ecology [6–
8]. Other prominent examples come from the realm of
operations research [9,10]. Different examples and appli-
cations are discussed in Refs. [11,12] and Ref. [13] and in
references cited therein.
Recently, it was found that in a simple Brownian search

the search efficiency (that is, the inverse time to find a
target) can be essentially increased if the searcher returns to
its starting point and recommences the search [14]. This
finding gave rise to a whole series of works, in which the
increase of search efficiency in the presence of resetting has
been studied for a wide range of search processes with
different waiting time distributions between the resetting
events. Particular attention was paid to the existence of
phase transitions in the space of parameters, which min-
imize the mean first passage time [15–18]. Thus, Brownian
search processes under different resetting distributions
were investigated in Refs. [19–24]. The optimal
Brownian search for a team of independent searchers
looking for a single target was considered in
Refs. [21,25], while the effects of partial absorption and
bounded domain on the diffusion with resetting have been
addressed in Ref. [26] and Ref. [16], respectively. The first
passage processes under resetting have been also analyzed

for continuous time random walk [13,27], Lévy flights
[15,28], and Sisyphus random walk [29].
A wide diversity of the random processes and restart

mechanisms considered have brought into life the attempts
to find the universal features of the first passage processes
subject to stochastic restart. General expressions for the
mean first passage time and distribution of first passage
(hitting) times under restart have been obtained, and a
conjecture that the constant pace resetting is the optimal
search strategy in the general case has been made [11,12].
This general framework was recently used to show that a
stochastic restart could also optimize splitting probabil-
ities [30].
The present Letter was inspired by the unified treatment

suggested in Ref. [12]. We here develop a renewal approach
to the first passage processes with resetting. The renewal
nature of the process allows for making several general
statements on its properties which will be discussed below.
The approach allows for simpler derivations and proofs of
known results, and leads to new ones. We concentrate on
the case of the single searcher, but discuss in detail the case
of several targets, i.e., the properties of splitting proba-
bilities. Three examples of derivations of some results
obtained previously are given in the Supplemental Material
[31], and more could be presented easily.
Problem position.—The search process corresponds to

the motion of a searcher starting at the origin; the aim of the
search is to hit one of n ≥ 1 targets, none of them at the
origin. A single realization of the search process will be
called a run. A successful run is completed by hitting a
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target, which terminates the whole process; an unsuccessful
(idle) run is terminated after some time t (which might be
fixed or random), the searcher is reset to the origin, and a
new run starts. The whole procedure is repeated until the
last run is successful.
The random variables characterizing a run and a resetting

procedure are considered independent, and each new run is
independent from all previous idle ones. The whole search
process until completing the last run is therefore a renewal
process.
Notation.—Let ψðtÞ be the probability density function

(PDF) of resetting intervals, and ΨðtÞ ¼ 1 −
R
t
0 ψðt0Þdt0 the

probability that no reset took place up to time t, i.e., the
survival probability in resetting. The resetting probability
density is assumed to be a proper one: Ψðt → ∞Þ ¼ 0.
Let ϕiðtÞ be the hitting (first passage) time PDF for the

target i in a single run: ϕiðtÞdt is the probability that the
target i was hit in the time interval between t and tþ dt,
and no target was ever hit before. The total hitting density
will be denoted as ϕðtÞ ¼ P

n
i¼1 ϕiðtÞ. Let, moreover,

FiðtÞ ¼
R
t
0 ϕiðt0Þdt0 be the corresponding cumulative func-

tion, FðtÞ ¼ P
iFiðtÞ be the total hitting probability in a

single run, and ΦðtÞ ¼ 1 − FðtÞ ¼ 1 −
P

n
i¼1

R
t
0 ϕiðt0Þdt0

be the total survival probability in a single run. The hitting
probability may be nonproper: limt→∞ΦðtÞ may be
nonzero.
If the mean hitting time T in a single run exists, this is

given by T ¼ R
∞
0 FðtÞdt. The nonproper situations, and the

proper one with diverging first moment will be considered
as cases T → ∞.
General approach.—Let us calculate the PDF piðtÞ

of hitting the target i under resetting. Up to time t there
may be 0,1,... idle runs, the last run is always complete.
Therefore, piðtÞ is given by the following expression:
piðtÞ ¼ ΨðtÞϕiðtÞ þ

R
t
0 ψðt0ÞΦðt0ÞΨðt − t0Þϕiðt − t0Þdt0þR

t
0 dt

0ψðt0ÞΦðt0Þ R t−t0
0 dt00ψðt00ÞΦðt00ÞΨðt− t0−t00Þϕiðt − t0−

t00Þ þ � � �. The first term is the probability density of hitting
the ith target in the first, complete, run, which was not reset
until the hitting time. The second term describes the situation
inwhich the first, idle runwas terminated at t0, and the second
run is complete, etc. Denoting κiðtÞ ¼ ΨðtÞϕiðtÞ and
RðtÞ ¼ ψðtÞΦðtÞ, and turning to the Laplace domain, we get

p̃iðsÞ ¼
κ̃iðsÞ

1 − R̃ðsÞ ; ð1Þ

with κ̃iðsÞ being the Laplace transform of κiðtÞ, and R̃ðsÞ is
the Laplace transform of RðtÞ. The total probability Πi ¼R
∞
0 piðt0Þdt0 of hitting the target i (splitting probability)
corresponds to p̃ið0Þ and is given by

Πi ¼
κ̃ið0Þ

1 − R̃ð0Þ ¼
R
∞
0 ψðt0ÞFiðt0Þdt0R∞
0 ψðt0ÞFðt0Þdt0 : ð2Þ

To get the second form from the first one we note that
κ̃ið0Þ ¼

R
∞
0 ΨðtÞϕiðtÞdt, and R̃ð0Þ ¼

R
∞
0 ψðtÞΦðtÞdt. Then

we rewrite the expression for κ̃ið0Þ performing integration by
parts: κ̃ið0Þ ¼ ΨðtÞFiðtÞj∞0 þ R

∞
0 ψðt0ÞFiðt0Þdt0. The first

term vanishes since Fið0Þ ¼ 0, because there is no target
at the origin, and Ψð∞Þ ¼ 0 because the distribution of the
resetting times is a proper one. Note that the relationΦðtÞ ¼
1 −

P
iFiðtÞ between ΦðtÞ and FiðtÞ guarantees the nor-

malization:
P

iκ̃ið0Þ ¼ 1 − R̃ð0Þ, except for the cases when
the probability of hitting any target in a run is exactly zero:
κ̃ið0Þ ¼ 0. This is equivalent to the orthogonality ofΨðtÞ and
ϕiðtÞ for all i on ½0;∞Þ, and is, e.g., the case when the
possible durations of the resetting intervals are smaller than
the minimal time necessary to hit any target. Therefore, if
hitting in a single run is possible at all, hitting under resetting
takes place with probability 1.
Moments of the hitting time.—Let us now discuss the

existence of the moments of hitting time, concentrating on
the single target case. The PDF of hitting a target in the
Laplace domain reads p̃ðsÞ ¼ κ̃ðsÞ=½1 − R̃ðsÞ�. Now we
can discuss under what conditions do the mean hitting time
τ, the mean squared hitting time, etc., exist. The number N
of the moments of p̃ðsÞ corresponds to the number of
the last regular term in the Taylor expansion of p̃ðsÞ ¼
a0 þ a1sþ a2s2 þ � � � þ aNsN þ oðsNÞ, where the remain-
der term is the first term singular in s ¼ 0. This number can
be found by counting regular terms in the expansion of the
numerator and denominator of the equation for pðsÞ, and
noting that the function 1=f̃ðsÞ has the same number of
regular terms in its expansion as the function f̃ðsÞ, provided
f̃ð0Þ ≠ 0. The details of such counting procedure are given
in Ref. [31]. The result is that in nonproper cases,
Φð∞Þ ≠ 0, the number of moments of pðtÞ is at least
equal to the number of moments of the resetting time
distribution. For proper cases the number of moments of
hitting time is not smaller than the sum of the numbers of
moments of hitting time PDF ϕðtÞ in a single run and of a
reset time PDF ψðtÞ.
Mean hitting time and optimal resetting.—Let PðtÞ ¼

1 −
R
t
0 pðt0Þdt0 be the probability of no hitting up to time t.

In the Laplace domain one has

P̃ðsÞ ¼ 1

s
−
1

s
κ̃ðsÞ

1 − R̃ðsÞ ¼
X̃ðsÞ

1 − R̃ðsÞ ; ð3Þ

with X̃ðsÞ ¼ s−1½1 − R̃ðsÞ − κ̃ðsÞ�. In the time domain we
have XðtÞ¼1−

R
t
0Rðt0Þdt0−

R
t
0κðt0Þdt0¼1−

R
t
0ψðt0ÞΦðt0Þdt0−R

t
0Ψðt0Þϕðt0Þdt0. Now one uses the fact that ψðtÞ ¼
−ðd=dtÞΨðtÞ and ϕðtÞ ¼ −ðd=dtÞΦðtÞ, performs integra-
tion by parts in the second integral, and notes that
Ψð0ÞΦð0Þ ¼ 1 to obtain XðtÞ ¼ ΨðtÞΦðtÞ. The hitting time
density is
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pðtÞ ¼ −
d
dt

PðtÞ; ð4Þ

and therefore in the Laplace domain pðsÞ ¼ 1 − sP̃ðsÞ,
where P̃ðsÞ is given by Eq. (3).
Let us assume that the mean hitting time does exist, e.g.,

that at least one of the PDFs ψðtÞ and ϕðtÞ possesses the first
moment. Then it is given by τ ¼ R

∞
0 pðtÞtdt ¼ R

∞
0 PðtÞdt.

In the Laplace domain we have τ ¼ lims→0 P̃ðsÞ ¼
X̃ð0Þ=½1 − R̃ð0Þ�. The numerator of this expression
is X̃ð0Þ ¼ R∞

0 ΨðtÞΦðtÞdt ¼ R∞
0

R∞
t ψðt0ÞΦðtÞdt0dt ¼R

∞
0 dt0ψðt0Þ R t0

0 ΦðtÞdt. Now we introduce a new function
ΛðtÞ ¼ R

t
0 Φðt0Þdt0 and write X̃ð0Þ ¼ R

∞
0 ψðtÞΛðtÞdt.

The expression in the denominator can be rewritten
as 1 − R̃ð0Þ ¼ R∞

0 dtψðtÞ½1 −ΦðtÞ�dt ¼ R∞
0 ψðtÞFðtÞdt.

Therefore, τ ¼ ½R∞
0 ψðtÞΛðtÞdt�=½R∞

0 ψðtÞFðtÞdt�.
Introducing another new function

GðtÞ ¼ ΛðtÞ
FðtÞ ¼

t −
R
t
0 Fðt0Þdt0
FðtÞ ; ð5Þ

we may write

τ ¼
R∞
0 ψðtÞFðtÞGðtÞdt
R
∞
0 ψðtÞFðtÞdt : ð6Þ

Note that ψðtÞFðtÞ is non-negative. By virtue of
the mean value theorem we now have τ¼
½Gðt�ÞR∞

0 ψðt0ÞFðt0Þdt0�=½R∞
0 ψðt0ÞFðt0Þdt0�¼Gðt�Þ, where

0 ≤ t� ≤ ∞. Therefore the important result follows:

τ ≥ min
t
GðtÞ:

The bound obtained is optimal, i.e., can be attained for a
specific resetting procedure. Let tr be the time at which the
global minimum of GðtÞ is reached, and let us assume that
tr < ∞. Taking ψðtÞ ¼ δðt − trÞ we get τ ¼ GðtrÞ: If the
global minimum of GðtÞ exists, and is attained at time
t ¼ tr, the optimal resetting procedure is a resetting at a
constant pace with resetting interval tr. The fact that the
constant pace resetting is the optimal strategy was already
observed in Ref. [12].
Looking for a needle in a haystack.—The nonproper

situations with low probability FðtÞ of hit in a single run
allow for a very simple approximation. In such situations
the integral in the numerator in Eq. (5) can be neglected
compared to t at all times, and thus GðtÞ ≃ t=FðtÞ.
Therefore the optimal resetting pace tr for which G0ðtrÞ ¼
0 is given by the solution of the equation

t
d
dt

lnFðtÞ ¼ 1: ð7Þ

To stress the quality of this approximation we consider an
example allowing for the exact solution.

Let us discuss a diffusive search of a sphere starting from
the outside [22]. LetϕðtÞ be PDFof the first passage time of a
Brownian motion with diffusion coefficientD to a sphere of
radius r in a 3d space placed at a distance x > r from the
origin. The result for ϕðtÞ is given by theorem 5 of Ref. [34]:
Its Laplace transform ϕ̃ðsÞ follows by taking n ¼ 0 and h ¼
1=2 in the corresponding formula. The inverse transform
gives the nonproper Lévy-Smirnov-like distribution ϕðtÞ ¼
frðx − rÞ=½ ffiffiffiffiffiffiffiffiffi

2πD
p

xt3=2�g exp ½−ðx − rÞ2=2Dt� normalized
onto r=x < 1, from which the expressions for FðtÞ and
ΛðtÞ follow. The explicit calculations reproducing the results
of Ref. [22] are given in Ref. [31]. Knowing these functions
one obtains the equation for GðtÞ [Eq. (5)], solves numeri-
cally the equation G0ðtrÞ ¼ 0 to obtain the optimal resetting
pace as a function of x and the corresponding τ ¼ GðtrÞ. In
what follows x is measured in units of r, and t in units of
r2=D, so that both get to be dimensionless. The results of the
exact solution are shown as solid lines in Fig. 1 for r ¼ 1
and D ¼ 1.
The approximation given by Eq. (7) can be reformulated

in the scaling form in a variable ξ ¼ ðx − rÞ2=2Dt:
−ðd=dξÞ lnFðξÞ ¼ ξ−1, and solved numerically giving
the solution ξr ≈ 0.708 77, from which

tr ≈ 0.705 44
ðx − rÞ2

D
; τ ≈ 3.017 20

xðx − rÞ2
rD

ð8Þ

FIG. 1. The lower solid curve represents the numerical solution
for the optimal resetting time tr as a function of the distance from
starting point to the center of the sphere, as obtained by finding
the minimum of the function GðtÞ given by Eq. (5); see Ref. [31]
for details. The corresponding dashed-dotted curve is the
approximate solution, Eq. (8). The solid upper curve and the
dashed upper one are the exact solution τ ¼ GðtrÞ and the
approximation, Eq. (8), for the mean hitting time τ. The
asymptotics of these curves is shown as a dotted straight line
having slope 3. Note the double logarithmic scales.
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follow. These are the approximations shown in Fig. 1 by the
dashed-dotted and by the dashed lines, respectively. We
note that the approximation devised for the small total
hitting probability in a single run works astonishingly well
in the whole domain of parameters starting from x=r as low
as 1.5.
When can resetting harm?—In situations with diverging

mean hitting time T in a single run resetting with some ψðtÞ
which does possess the mean leads to finite τ. The resetting
with ψðtÞ with diverging first moment [e.g., ψðtÞ ≃ t−1−α

with α < 1] leads to a faster decrease of pðtÞ compared to
ΦðtÞ, see Eq. (19) of Ref. [31], i.e., increases search
efficiency. Therefore the cases when resetting may harm
are pertinent to finite T. Since the optimal resetting time
corresponds to the position of the global minimum of GðtÞ,
no resetting is the best option when this is attained at
infinity. A necessary condition for this is that the limiting
value Gð∞Þ is approached from above.
Let us discuss, under which condition this takes place.

The derivative of GðtÞ can be put as G0ðtÞ ¼
F−2ðtÞ½ΦðtÞFðtÞ − F0ðtÞ R t

0 Φðt0Þdt0�. Now we consider t ≫
T and note that FðtÞ → 1 and

R
t
0 Φðt0Þdt0 → T, respectively,

and get G0ðtÞ ≃ΦðtÞ − TF0ðtÞ ¼ 1 − FðtÞ − TF0ðtÞ. This
is negative at infinity if F0ðtÞ þ T−1FðtÞ > T−1.
The borderline behavior corresponding to the equality in
the previous relation is FðtÞ ¼ 1 − e−t=T , i.e.,
ϕðtÞ ≃ T−1 expð−t=TÞ. The faster decay corresponds to
the case when resetting may harm. Therefore our next
important conclusion is that the only cases when a resetting
procedure may harm correspond to the single run hitting
probability densities decaying faster than expð−t=TÞ. An
example of the case when the resetting may harm is given
by ϕðtÞ ¼ δðt − t0Þ, where the resetting at time t < t0
makes the run idle. The exponential hitting PDF ϕðtÞ ¼
T−1 expð−t=TÞ is an interesting situation: here GðtÞ ¼ T ¼
const, in which case the resetting does not influence the
search efficiency.
Splitting probabilities.—Let us return to our Eq. (2) for

splitting probabilities. Parallel to what was done above, we
introduce the functions γiðtÞ ¼ FiðtÞ=FðtÞ, rewrite the
expression in the numerator via γi, and apply the mean
value theorem so that Πi ¼ γiðt�Þ with 0 < t� < ∞. This
immediately gives us the bounds on πi:

min
t
γiðtÞ ≤ Πi ≤ max

t
γiðtÞ:

The bounds are optimal: the first one is reached applying
the constant-pace resetting with reset time tmin, the second
one applying the constant-pace resetting with reset time
t ¼ tmax, where tmin and tmax are the times at which γiðtÞ
attains it minimal and maximal values. Therefore the
resetting gives the possibility to manipulate splitting
probabilities.

As an example we consider the diffusive motion
with drift velocity v on an interval of length L. The
resetting corresponds to return of the particle to its
starting position x0 within the interval. The probability
density of the searcher’s position within the interval is
given by the Fokker-Planck equation ð∂=∂tÞρðx; tÞ ¼
−vð∂=∂xÞρðx; tÞ þDð∂2=∂x2Þρðx; tÞ with absorbing
boundary conditions at x ¼ 0 and x ¼ L. The solution
of this problem is known (see Ref. [35]): ρðx;tÞ¼
ð2=LÞexp½−ðv=2DÞðx0−xÞ−ðv2t=4DÞ�×P∞

n¼1sinðnπx=LÞ
sinðnπx0=LÞexpð−Dn2π2t=L2Þ. The hitting time densities
ϕLðtÞ and ϕRðtÞ of the left and of the right end of the
interval are given by the diffusion fluxes ϕL;RðtÞ ¼
�Dð∂=∂xÞρðx; tÞjx¼0;L, and the functions ϕL;R follow in
a form of rapidly converging series. Now we can discuss
the behavior of splitting probabilities γL;RðtrÞ under con-
stant-pace resetting with resetting interval tr. In Fig. 2 we
plot these quantities for the case x0 ¼ 1, v ¼ 1, D ¼ 1 and
L ¼ 10. We see that for short resetting times, when the
diffusion “wins” over the drift, the upstream (left) end of
the interval is hit with the probability close to unity, while
for longer resetting intervals the downstream end is hit with
higher probability.
Conclusions.—The search problem under renewal reset-

ting can be solved in full generality leading to astonishingly
simple expressions in the Laplace domain. These can be
used for the unified derivation of known and new results.
Let us summarize some of them. The total number of
moments of the hitting time is not less than the sum of the
numbers of moments of a search probability in a single run
and of the resetting time distribution. The optimal resetting
procedure always corresponds to resetting at a constant
pace. No resetting can be a better option only if the
probability density of finding a target in a single run
decays at longer times faster than e−t=T , with T being the

0 10 20 30 40 50

t

γ

0

0.25

0.5

0.75

1

L,R

r

FIG. 2. The probability γL to find first the left (upstream)
boundary, full curve, blue, and the probability γR to find first the
right (downstream) boundary of the interval, dashed line, red, as
functions of the resetting period tr; see text for details.
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mean hitting time in a single run. If several targets are
present, resetting allows for manipulation of the probabil-
ities of finding each of them.
The authors are indebted to Mr. Jonas Schäfer for

technical assistance including calculations and plots perti-
nent to Fig. 2.
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