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We present a new quantum communication complexity protocol, the promise-quantum random access
code, which allows us to introduce a new measure of unbiasedness for bases of Hilbert spaces. The proposed
measure possesses a clear operational meaning and can be used to investigate whether a specific number of
mutually unbiased bases exist in a given dimension by employing semidefinite programming techniques.
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Introduction.—Mutually unbiased bases (MUBs) play a
special role in the formalism of quantum mechanics. In
particular they serve as complementary quantum tests, and
find wide applicability in many fields of quantum infor-
mation science such as quantum state tomography [1,2],
quantum key distribution [3], quantum teleportation, and
dense coding [4]. Hence, a general understanding of MUBs
is well motivated and of general interest, see Ref. [5] for an
extensive review and further references.
Explicitly, two orthonormal bases fjψ1

i igi and fjψ2
jigj of

Cd are said to be mutually unbiased if

jhψ1
i jψ2

jij2 ¼
1

d
; ∀ i; j ∈ ½d�; ð1Þ

where ½d�≡ f1; 2;…; dg. The term unbiased is used
because if we pick any basis vector jψ1

i i, then performing
a measurement in the fjψ2

jigj basis will yield a completely
random result (i.e., each outcome jψ2

ji will have equal
detection probability 1=d).
A set of MUBs in dimension d is said to be maximal,

if there are dþ 1 bases which are all pairwise mutually
unbiased. The construction of maximal sets when d ¼ p, a
prime number, was described by Ivonovic [1], and later by
Wootters and Fields when d ¼ pk, a prime power [2]. The
general problem of whether dþ 1 bases exist for arbitrary
dimensions has remained open for at least the past 29 years.
In particular it is an open question whether a complete

set of MUBs exists even in the simplest case, namely, in
dimension 6. Zauner’s conjecture states that no more than
three MUBs exist in dimension 6 [6]. The task of proving
the conjecture is a research field on its own, see, e.g.,
Refs. [7,8] for partial analytical results supporting the
conjecture. Numerical approaches have also failed to be
conclusive [9].

In this Letter we introduce a novel protocol named
promise-quantum random access code (PQRAC). The main
idea of this protocol is to use the so-called nd → 1 quantum
random access codes (QRACs) with certain constraints.
Our main technical result shows that a specific average
success probability of the protocol can be achieved if and
only if n MUBs exist in dimension d.
The protocol allows us to create a new measure of

unbiasedness, which quantifies the amount by which two
(or more) bases are mutually unbiased. Other measures
currently exist and are in use [4], yet the presented one
possesses a direct operational interpretation as the success
probability of a well-defined communication task.
Furthermore, the PQRAC game is suitable for numerical

optimization techniques like semidefinite programming
(SDP) [10]. In particular, one may use the see-saw method
[11] to search for n MUBs in dimension d. What is more,
PQRACs may be used together with the Navascues and
Vertesi method [12] to discard the existence of nMUBs in a
particular dimension. This exclusion is a rigorous state-
ment, in contrast to drawing the conclusion out of the
failure of trying to find them. We have been unable to rule
out the existence of 4 MUBs in dimension 6, but argue that
the problem is now at arm’s length for future researchers.
Methods.—We begin by introducing random access

codes (RACs) [13]. An nd → 1 RAC is a protocol in
which Alice tries to compress an n-dit string into 1 dit, such
that Bob can recover any of the n dits with high probability.
More precisely, Alice receives a uniformly distributed
random input string x ¼ x1x2 � � � xn, xi ∈ ½d�. She then
uses an encoding function Ec∶½d�n → ½d� (possibly classi-
cally probabilistic), and is allowed to send one dit a ¼
EcðxÞ to Bob. On the other side, Bob receives an input
y ∈ ½n� (uniformly distributed), and together with Alice’s
message a uses one of n (possibly classically probabilistic)
decoding functionsDy

c∶½d� → ½d�, to output b ¼ Dy
cðaÞ as a

guess for xy. If Bob’s guess is correct (i.e., b ¼ xy) then we
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say that they are successful, otherwise we say that they are
unsuccessful or fail.
Similarly, we define nd → 1 QRACs where Alice enc-

odes her input n-dit string into a d-dimensional quantum
system (qudit) via Eq∶½d�n → Cd, and sends the qudit ρx ¼
EqðxÞ to Bob. He then performs one of his decoding
functions Dy

q∶Cd → ½d� to output his guess b for xy. The
decoding function is simply a quantum measurement; i.e.,
he outputs his guess b with probability Pðb ¼ xyÞ ¼
tr½ρxMy

b�, where the operatorsMy
b are POVMs (i.e., positive

and ∀ y
P

bM
y
b ¼ 1). As a figure of merit, we employ the

optimal average success probability for both RACs and
QRACs:

P̄c;qðn; dÞ ¼ max
fE;Dg

1

ndn
X

x

X

y

Pðb ¼ xyÞ: ð2Þ

The maximization is over encoding-decoding strategies
fEc;q;Dc;qg (classical or quantum, respectively) [14], and
the average is taken over all possible inputs ðx; yÞ of Alice
and Bob. In the quantum case, the optimal average success
probability P̄q, can be achieved with pure states, ρx ¼
jxihxj [13], where jxi is the eigenvector of

P
yM

y
xy with

largest eigenvalue. In Ref. [15], it was shown that for
2d → 1 QRACs this maximum is achieved when the
operators My

b are (rank 1) projective measurements.
Therefore, throughout the rest of this Letter we will be
considering only pure-state encoding and von-Neumann
measurements.
RACs and QRACs have increasingly become an exper-

imental tool to test the “quantumness” or nonclassical
behavior of a system [16,17]. For fixed n and d, we have
P̄c < P̄q, and a gap is exploited to show that a system is
behaving nonclassically. For example a 22 → 1 RAC has
P̄c ¼ 0.75, while the corresponding QRAC has an optimal
average success probability of P̄q ¼ ð2þ ffiffiffi

2
p Þ=4 ≈ 0.8536

[18]. Thus for a system of dimension 2, observing an
average success probability greater than 0.75 indicates
nonclassical behavior.
The quantum advantage comes from encoding Alice’s

state as a superposition of the bases fjψ1
i igi and fjψ2

jigj,
namely, jxi ¼ αjψ1

x1i þ βjψ2
x2i, while Bob measures in the

fjψy
i igi basis. We have the following:
Lemma 1. For a 2d → 1 QRAC, the optimal average

success probability

P̄qð2; dÞ ¼
1

2

�

1þ 1
ffiffiffi
d

p
�

ð3Þ

is obtained if and only if Bob’s measurement bases fjψ1
i igi,

fjψ2
jigj are mutually unbiased.
The proof is given in the Supplemental Material [19]. We

find it interesting to note here an observation that Lemma 1

cannot be generalized to the case of nd → 1 QRACs for
n ≥ 3, as stated below:
Observation 1. The MU condition on Bob’s measure-

ment bases is not sufficient for obtaining the optimal
average success probability in nd → 1QRACs when n ≥ 3.
The proof of this result is by direct calculation (see

Supplemental Material [19] for details). This occurs since
there are inequivalent subsets of MUBs (i.e., not related
by unitary transformations) in higher dimensions. As an
example, let us consider the case n ¼ 3, d ¼ 5. Bob must
choose 3 different measurement bases, and he can do so in
ð6
3
Þ ¼ 20 ways. Half of those selections lead to an average

success probability of 0.610 855, while the other half give
0.596 449. Hence, the choice of the subset of MUBs
matters. This feature occurs also for other choices of n
and d. However, we conjecture that the optimal average
success probability for nd → 1 QRACs is indeed achieved
with a suitable choice of MUBs.
Next we define a ðn;mÞd → 1 PQRAC, m ≤ n, as an

nd → 1 QRAC with an extra promise. Let Snm be the set of
all possible subsets of [n] of size m. Then in a PQRAC,
Alice receives an additional input z ∈ Snm, with the promise
that y ∈ z. That is, Alice knows that Bob will not be
questioned over some of Alice’s inputs, see Fig. 1 for an
illustration of a PQRAC.
Hence, the optimal average success probability [Eq. (2)],

is modified in the case of ðn;mÞd → 1 PQRACs to

P̃qðn;m;dÞ¼ max
fρ;fMgg

1

ðnmÞmdm
X

z∈Snm

X

xz

X

y∈z
tr½ρx;zMy

xy �; ð4Þ

where the summation over xz indicates a summation over
xi1 ; xi2 ;…; xim such that fi1; i2;…; img ¼ z, and the maxi-
mization is taken over all quantum encoding and decoding
strategies fρ; fMgg. Now, we are able to prove our main
technical result:
Lemma 2. For a ðn; 2Þd → 1 PQRAC, the following

holds:

P̃qðn; 2; dÞ ≤
1

2

�

1þ 1
ffiffiffi
d

p
�

ð5Þ

FIG. 1. Schematic representation of a ðn;mÞd → 1 promise–
quantum random access code. Here xi ∈ ½d�, y ∈ ½n�, and z is a
subset of [n] with m elements. The bold inputs xk depict k ∈ z. ρ
is the quantum state that Alice sends to Bob.
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with equality if and only if at least n MUBs exist in
dimension d.
Proof.—We begin by writing the optimal average

success probability of the ðn; 2Þd → 1 PQRAC.

P̃qðn; 2; dÞ ¼ max
fρ;fMgg

1

ðn
2
Þ2d2

X

z∈Sn
2

X

xz

X

y∈z
tr½ρx;zMy

xy �

≤
1

ðn
2
Þ
X

z∈Sn
2

�

max
fρ;fMgg

1

2d2
X

xz

X

y∈z
tr½ρx;zMy

xy �
�

:

The inequality follows, since the strategies to maximize the
summands might not be compatible with each other globally.
In fact, we recognize the term in parentheses as P̄qð2; dÞ, the
optimal success probability for a 2d → 1 QRAC [Eq. (2)].
From Lemma 1, this maximization occurs if and only if the
measurement bases corresponding to the set z are mutually
unbiased. It follows that it is possible to simultaneously
satisfy all of these maximization constraints if and only if
there exists n MUBs in dimension d. □

The intuition behind Lemma 2, is that Bob must be ready
to measure in all n bases. If there exist n bases which are all
pairwise mutually unbiased, then essentially they are just
playing a more complicated version of the usual 2d → 1
QRAC. If these bases do not exist, then for some z ∈ Sn2 ,
the protocol will not be able to achieve the optimal value
[Eq. (3)], dropping the entire average.
Results.—In the context of MUBs, Ref. [4] has intro-

duced a distance measure between two bases fjψ1
i igi and

fjψ2
jigj which quantifies unbiasedness:

D2
ψ1ψ2 ¼ 1 −

1

d − 1

X

i;j∈½d�

�

jhψ1
i jψ2

jij2 −
1

d

�
2

: ð6Þ

The measure is symmetric (D2
ψ1ψ2 ¼ D2

ψ2ψ1). If the bases

are the same, then D2
ψ1ψ1 ¼ 0. The maximum D2

ψ1ψ2 ¼ 1 is

obtained if and only if the bases are mutually unbiased. For
a set of n bases in Cd (fψ jg ¼ fjψ j

iigi, j ∈ ½n�), one can
analyze the average square distance between all possible
pairs of bases [4]:

D̄2ðfψ igiÞ ¼
1

ðn
2
Þ

X

fa;bg∈Sn
2

D2
ψaψb : ð7Þ

Likewise, D̄2 ¼ 1 if and only if all bases are pairwise
mutually unbiased. However, Eq. (7) is an abstract distance
measure, lacking an operational interpretation.
Lemma 2 immediately leads us to our first result. Given a

set of n bases in dimension dwe define as their unbiasedness
measure the average success probability in a ðn; 2Þd → 1
PQRAC if the bases are used as Bob’s measurement bases.
This measure is thus defined operationally and has the

following properties: (1) The maximum of P̄qð2; dÞ ¼
1
2
ð1þ d−1=2Þ is attainable if and only if all bases are pairwise

unbiased. (2) It is symmetric under permutation of bases.
(3) The minimal value of P̄cð2; dÞ ¼ 1

2
ð1þ d−1Þ is achieved

if and only if all bases are the same. The optimal classical
success probability of nd → 1 RACs is shown in Ref. [27].
Explicitly, given n bases of Cd, fψ igi, the maximum

attainable average success probability of the PQRAC, p̄, is

p̄ðfψ igiÞ ¼
1

ðn
2
Þ

X

fa;bg∈Sn
2

�
1

2
þ 1

2d2
X

i;j∈½d�
jhψa

i jψb
j ij

�

; ð8Þ

which comes as a direct conclusion of Lemma 1. We may
normalize Eq. (8) such that the minimum value is 0
(obtained if and only if all bases are the same), and the
maximum value is 1 (obtained if and only if all bases are
pairwise MU) and get the expression

Q̄ðfψ igiÞ ¼
p̄ðfψ igiÞ − P̄cð2; dÞ
P̄qð2; dÞ − P̄cð2; dÞ

: ð9Þ

See the Supplemental Material [19] for a direct comparison
between Eqs. (9) and (7).
For illustrative purposes, we have optimized the value of

the ð4; 2Þ6 → 1 PQRAC game expression using the see-saw
method [11]. This allows us to show how the optimization of
Eq. (9) may be used to construct MUBs in a particular
dimension, as well as providing numerical examples of how
D̄2 and Q̄ compare. With this method, the maximal value of
D̄2 of four MUBs in dimension 6 we obtained is 0.998 284
with Q̄ ¼ 0.998 045. On the other hand, the bases from
[28,29] have D̄2 ¼ 0.998 292, and Q̄ ¼ 0.998 036. With this
result one sees that the two measures, Eqs. (7) and (9), are
not equivalent and induce different partial orderings on
the sets of bases. See the Supplemental Material [19] for
more details.
Our second result is another direct application of

Lemma 2, and deals with ruling out if there are n mutually
unbiased bases in dimension d. Explicitly, if it is possible to
show that there are no sets of encoded states and meas-
urement bases that would obtain a success probability of
P̄qð2; dÞ, then one immediately concludes that there does
not exist n MUBs in the given dimension. Thus one may
use the SDP hierarchy of relaxations proposed by
Navascues and Vertesi (NV) [12]. The method defines a
sequence of SDP problems yielding upper bounds to
optimization tasks over quantum probability distributions
with dimensional constraints. One can show that the
method converges to the accurate quantum values [30].
If at a given level of the hierarchy the upper bound falls
below the threshold Q̄ ¼ 1, then the conclusion follows.
We emphasize that if n MUBs do not exist in a particular
dimension, then applying the SDP hierarchy to the ðn; 2Þd

PHYSICAL REVIEW LETTERS 121, 050501 (2018)

050501-3



PQRAC gives an algorithmic way of proving their non-
existence. On the other hand, if n MUBs do exist, the
proposed method will fail to draw a conclusion.
Implementing the hierarchy.—Let us try to directly apply

the NV hierarchy to the ðn; 2Þd → 1 PQRAC. To imple-
ment the kth level of the hierarchy, Qk, the set Sk

d of all
feasible moment matrices of order 2k arising from quantum
systems of dimension d must be calculated. For this,
moment matrices Γj

k are randomly generated from this
set until spanðfΓj

kgjÞ ¼ Sk
d. In practice, the algorithm keeps

creating new moment matrices j ¼ f1; 2;…; vkg and stops
when Γvkþ1

k ∈ spanðfΓj
kgvkj¼1Þ. The method requires an

assumption on the rank of the projectors fMy
bg, but in

our scenario Bob’s optimal strategy is to implement d-
dimensional von Neumann measurements; therefore, all
operators are rank 1.
In order to generate Γj

k, we randomly choose A ¼ ðn
2
Þd2

states for Alice to encode and B ¼ nd measurement
operators for Bob (n bases of Cd). Then, Γj

k contains the
traces of all strings of size less than or equal to 2k
constructed from Alice’s states and Bob’s operators. For
example, typical matrix elements of Γj

1 include tr½ρjx;zρjx0;z0 �,
tr½ρjx;zMy;j

b �, and tr½My;j
b My0;j

b0 �. While in Γj
3, we can find

tr½ρjx;zMy;j
b My0;j

b0 M
y00;j
b00 ρ

j
x0;z0M

y000;j
b000 �, etc.

We write the kth order relaxation to our problem as the
following semidefinite program [12]:

P̃qðn; 2; dÞ ¼ max tr½B̂Γk�
s:t: Γk ∈ Sk

d; ðΓkÞ1;1 ¼ 1; Γk ≥ 0; ð10Þ

where we call B̂ the PQRAC game matrix, and construct it
to “pick out” the values tr½ρx;zMy

b� from Γk such that b ¼ xy
and y ∈ z.
Roughly 1

2
ðAþ BÞ4k real-valued numbers need to be

stored in a computer’s RAM in order to describe the set of
all feasible moment matrices Sk

d. Below, we describe a
potentially quadratic reduction in the problem’s memory
requirements. See the Supplemental Material [19] for
details.
Note that B̂ ¼ B̂T , and is a sparse matrix with a lot of

symmetries. In this case, we employ the symmetries
corresponding to relabeling measurement device outputs,
and the ones corresponding to permuting the labels of
the measurement devices themselves. This approach has
been followed on the Navascues-Pironio-Acin hierarchy in
the Bell-test scenario [31].
Let B̂ be invariant under the group of transformations G.

In other words, for every representation G of an element
g ∈ G, GB̂GT ¼ B̂. Then, if we apply a group action on the
game matrix inside the objective function [Eq. (10)], this
would be equivalent to applying a group action on Γk.

Namely, tr½B̂Γk� ¼ tr½B̂GTΓkG�. Therefore, it is unneces-
sary to consider the full space of feasible moment matrices
Sk
d and we can simplify Eq. (10) into

P̃qðn; 2; dÞ ¼ max tr½B̂Γ̂k�
s:t: Γ̂k ∈ GðSk

dÞ; ðΓ̂kÞ1;1 ¼ 1; Γ̂k ≥ 0; ð11Þ

where we denote GðSk
dÞ as the set of feasible moment

matrices which are G invariant. In order to implement this,
we generate random invariant moment matrices Γ̂j

k by first
creating a moment matrix Γj

k and averaging it out over all of
the group elements:

Γ̂j
k ¼

1

jGj
X

G

GΓj
kG

T: ð12Þ

Clearly Γ̂j
k∈GðSk

dÞ, and this is repeated until spanðfΓ̂j
kgjÞ¼

GðSk
dÞ. To illustrate the power of Eq. (11), we report that

for a ð4; 2Þ5 → 1 PQRAC, dimðS1
5Þ ¼ 13672 and the SDP

run-time was 22.5 h on a desktop computer, whereas
dimðGðS1

5ÞÞ ¼ 7 and had a run-time of 50 s.
Using this, we have implemented Q1 and a subset of the

“almost quantum” level [32] (Q1þsucc) for some relevant
PQRAC cases. The level Q1þsucc includes traces of strings
of length ≤ 2 from the set of operators ffρjx;zg; fMy;j

b g;
fρjxz1 ;xz2 ;fz1;z2gM

zi;j
xzi

gg. That is, we also included pairs of

states and measurements which lead to successful trials.
The details of the implementation are found in the
Supplemental Material [19].
For the ð4; 2Þ6 PQRAC, we obtain a value of Q̄ ¼

1.428 825 41 for the first level of the hierarchy Q1.
This bound is greatly improved for Q1þsucc, where
Q̄ ¼ 0.999 999 96. With our numerical precision and at
this hierarchy level we have been unable to rigorously
exclude the existence of 4 MUBs in dimension 6 [33]. We
notice that the hierarchy level Q2 was also unable to rule
out the existence of 4 MUBs in d ¼ 2 (Q̄ ¼ 0.999 999 99).
If these four bases existed, together with the d ¼ 3 MUBs,
one could create four MUBs in dimension 6. We conjecture
that in order for a level of the hierarchy to be able to rule
out the existence of 4 MUBs in dimension 6, it must first
rule out the existence of 4 MUBs in d ¼ 2. Future work
requires more efficient ways of calculating Eq. (11), and
higher levels of the hierarchy.
Conclusions.—In this Letter we give a new class of

quantum games, PQRACs, which serve as an operational
way of testing unbiasedness. It also enables one to
reformulate the problem of searching for a given number
of MUBs in a particular dimension as a problem of
optimizing the strategy of the PQRAC game. In particular,
if one is able to get a proper upper bound on the value of
the game, then our formulation allows us to exclude the

PHYSICAL REVIEW LETTERS 121, 050501 (2018)

050501-4



existence of a given number of MUBs in the considered
dimension. We have exploited the symmetries of the
PQRAC game matrix in the Navascues and Vertesi hier-
archy. We hope this will lead to rigorously proving
Zauner’s conjecture by considering higher levels.
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