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We propose a quantum control scheme aimed at interacting systems that gives rise to highly selective
coupling among their near-to-resonance constituents. Our protocol implements temporal control of the
interaction strength, switching it on and off again adiabatically. This soft temporal modulation significantly
suppresses off-resonant contributions in the interactions. Among the applications of our method we show
that it allows us to perform an efficient rotating-wave approximation in a wide parameter regime, the
elimination of side peaks in quantum sensing experiments, and selective high-fidelity entanglement gates
on nuclear spins with close frequencies. We apply our theory to nitrogen-vacancy centers in diamond and
demonstrate the possibility for the detection of weak electron-nuclear coupling under the presence of strong
perturbations.
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Introduction.—The ability to selectively manipulate and
couple the constituents in an interacting quantum cluster is
a fundamental requirement for a wide range of techno-
logical applications [1–3]. For instance, the individual
addressing of magnetic nuclei in a target molecule with
a quantum sensor, such as the nitrogen-vacancy (NV)
center in diamond [4], is a crucial requirement to determine
the 3D structure of single molecules of interest for bio-
chemistry and medicine [5–12]. In addition, the selective
coupling of the quantum sensor with nearby quantum
registers would enhance the sensitivity and resolution of
quantum sensing protocols [13–18]. From a different point
of view, if the addressing operation does not disturb the
other qubits surrounding a certain target register, namely
the 13C and 29Si nuclear spins that appear in diamond [19–
23] and silicon carbide [24,25], or Eu3þ ions in stoichio-
metric rare-earth crystals [26,27], one can use the available
qubits for quantum information [28–30] or quantum
simulation [31] tasks. Furthermore, nuclear qubits coupled
to an electron spin are also important to build a robust
optical interface for quantum networks [32,33].
The addressability problem can be reduced to the

situation shown in Fig. 1(a) where a control qubit (CQ)
interacts with multiple resource qubits (RQs) [34,35]. In
order to exert control on a certain RQ the characteristic
frequency ω0 of the CQ is tuned to the resonance frequency
ωj of the RQ via a continuous drive that exploits the
Hartmann-Hahn resonance [36–38] or the application of
pulsed dynamical decoupling (DD) [39–43]. As we will
show later, because of the time independent coupling cj
between the CQ and each RQ, the spectral responses are
proportional to cj=δ0;j which decays slowly with the
energy mismatch δ0;j ¼ ω0 − ωj (j > 0 for RQs), i.e., in
a power-law manner. Therefore other off-resonant RQs will

considerably perturb the CQ and vice versa, see Fig. 1(b),
prohibiting the high-fidelity addressing on the desired
target RQ. This is particularly challenging for realistic
settings where the RQs only slightly differ in their
resonance frequencies.
In this Letter, we propose the idea of soft temporal

quantum control which enables on-resonant coupling
within a desired set of target systems, while efficiently
avoiding unwanted off-resonant contributions coming
from others. With the specific case of Gaussian soft control,
off-resonant effects are exponentially suppressed by the
mismatch δ0;j as expð−σ2δ20;j=2Þ, see Fig. 1(c), achieving
high-selective coupling. In addition, we develop an average
Hamiltonian theory for our soft quantum control method.
By using the quantum adiabatic theorem, we take high-
order virtual transitions into account and provide an

(a) (b) (c)

FIG. 1. Advantages of temporal shaping of coupling. (a) Illus-
tration for the control qubit and resource qubits. (b) For the case
of constant coupling cj, the off-resonant response decays slowly
cj=δ0;j (blue lines) with the energy mismatch δ0;j. The overlaps
(gray areas) on the frequency response prohibit high-fidelity
selective coupling. (c) With the soft coupling proposed in this
Letter the off-resonant response decays exponentially (see the
orange lines), which allows high-fidelity addressing.
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accurate description of the dynamics even for situations
involving strong perturbations and long evolution times.
We will show specific applications of our method such as
the realization of an efficient rotating-wave approximation
(RWA) and highly selective two-qubit gates for quantum
sensing and computing.
Generic model.—To explore the effects emerging from

temporal control, we consider the Hamiltonian (ℏ ¼ 1)
H ¼ HS þHint, where HS is the Hamiltonian for the
quantum registers and Hint ¼ λðtÞPαcαVα describes their
interactions that we want to perform selective control. λðtÞ
is a dimensionless, time-dependent global factor and Vα

may be single-body or N-body operators with strength cα
(i.e., the norm of Vα is bounded to one).
In terms of the eigenvalues ωj and the projection

operators PðωjÞ of the Hamiltonian HS ¼
P

jωjPðωjÞ,
we write

Hint ¼ λðtÞ
X

α;j;k

cαV
ωj;ωk
α ; ð1Þ

where each V
ωj;ωk
α ≡ PðωjÞVαPðωkÞ fulfils

½HS; V
ωj;ωk
α � ¼ ðωj − ωkÞVωj;ωk

α : ð2Þ

In coupled quantum networks, V
ωj;ωk
α would describe the

interaction between quantum systems with an energy
mismatch of δj;k ≡ ωj − ωk. Our target is to suppress the
terms V

ωj;ωk
α in Eq. (1) for which ωj ≠ ωk, and to keep the

energy conserving ones (i.e., those with δj;k ¼ 0) by
shaping the parameter λðtÞ for the sake of enhanced
selectivity.
Leading-order effects and soft quantum control.—In a

rotating frame with respect to HS, Hint becomes
H0

intðtÞ ¼ λðtÞPα;j;kcαV
ωj;ωk
α eiδj;kt. In the absence of a

modulation for λ, i.e., λðtÞ ¼ λ0, unwanted terms in Vα

can be neglected by the RWA provided that the δj;k is
sufficiently large compared with λ0cα. To see how the
modulation of λðtÞ improves this situation, we calculate the
leading-order effective Hamiltonian in the rotating frame
by using the Magnus expansion [44,45] for a time interval
½−T=2; T=2�; it reads

H̄ð1Þ
int ¼

1

T

Z
T=2

−T=2
dtH0

intðtÞ ¼
X

α;j;k

cαgðδj;kÞVωj;ωk
α ; ð3Þ

where the averaging factor

gðδj;kÞ ¼
1

T

Z
T=2

−T=2
dtλðtÞeiδj;kt ð4Þ

can be controlled by λðtÞ.
For the conventional case of a constant λðtÞ ¼ λ0,

we have

gðδj;kÞ ¼ gCðδj;kÞ≡ λ0
sin ðTδj;k=2Þ
ðTδj;k=2Þ

: ð5Þ

In this manner, unwanted terms in Vα are suppressed by a
large energy mismatch δj;k to decrease the value of gCðδj;kÞ
[46]. By selecting λ0 sufficiently small, the off-resonant
interactions can be more efficiently suppressed with the
associated improvement in the addressing for the resonant
terms. See Refs. [9,47] for a specific application of the
latter to the case of NV centers in diamond surrounded by
13C nuclear spins. However, from Eqs. (3) and (5) the
effects introduced by off-resonant terms decay slowly as a
power law λ0cα=δj;k on the energy mismatch δj;k while, in
addition, because gð0Þ ¼ λ0 a decrease on λ0 also carries
the undesired effect of reducing the intensity of the
coupling with the resonant terms.
From Eq. (4), we find that by using a time-dependent soft

modulation, i.e., λðtÞ is small at the beginning and at the
end of quantum evolution, the nonresonant terms can be
removed with greater fidelity. More specifically, we pro-
pose the Gaussian temporal modulation

λðtÞ ¼ λ0 exp ½−t2=ð2σ2Þ�; ð6Þ

which has the corresponding factor

gðδj;kÞ ¼ gMðδj;kÞ≡ λ0ηðσ; TÞ exp
�

−
1

2
σ2δ2j;k

�

; ð7Þ

where ηðσ;TÞ¼ ffiffiffiffiffiffiffiffi
π=2

p ðσ=TÞferf½ðT−2iσ2δj;kÞ=ð2
ffiffiffi
2

p
σÞ�þ

erf½ðTþ2iσ2δj;kÞ=ð2
ffiffiffi
2

p
σÞ�g and erfðxÞ ¼ ð2= ffiffiffi

π
p Þ×

R
x
0 dze

−z2 . A simple inspection of Eq. (7) reveals that the
effective couplings gMðδj;kÞcα decay exponentially with
δj;k. Hence, we expect the selectivity to be dramatically
improved. We want to remark that our temporal shaping
scheme shares interesting similarities with the control by
Gaussian pulses of classical fields [48]; however, in our
case, the shaping is exerted on the coupling between
quantum systems where quantum backaction plays a
significant role on both sides [49].
Higher-order effects and adiabatic average

Hamiltonian.—Although the leading-order average
Hamiltonian H̄ð1Þ

int in Eq. (3) describes well the dynamics
for T ≪ 1=max jcαj, if strong coupling constants are
present, higher-order corrections [44,45] have to be
included in order to have an accurate description of the
dynamics for larger times.
While the evaluation of higher-order terms is involved in

the general case, now we will show that our proposed soft
quantum control scheme allows us to easily describe the
system propagator including high-order corrections when
executed in an adiabatic manner. To this end we first
analyze the propagator UD ¼ exp ð−i R T=2

−T=2 HDdtÞ, where
HD ¼ HS þ λðtÞPαcα

P
jV

ωj;ωj
α includes the on-resonance
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desired interactions. In the latter all V
ωj;ωj
α operators

commute with HS; see Eq. (2); hence HD can be diagon-
alized in the common eigenstates jψD

n i (n ¼ 1; 2;…) ofHS

and V
ωj;ωj
α . Therefore UD ¼ P

ne
−iϕD

n ðTÞjψD
n ihψD

n j is also
diagonal in the basis fjψD

n ig and the dynamic phases
ϕD
n ðTÞ include the effect of energy shifts coming

from V
ωj;ωj
α .

If the whole Hamiltonian H is considered, the time-
ordered evolutionU ¼ T exp ½−i R T=2

−T=2HðtÞdt� is generally
nondiagonal in the basis fjψD

n ig and the noncommuting
V
ωj;ωk
α terms would cause unwanted transitions between the

different jψD
n i states.

However, when the soft control is included one can
efficiently eliminate the unwanted interactions caused by
V
ωj;ωk
α , even for long evolution times T. At the boundaries

of the interaction times (−T=2 and T=2), λðtÞ has negligible
values and therefore the system’s eigenstates coincide
with those of HD. More precisely, under the condition
of adiabatic evolution [50,51], there are no transitions
among the states jψD

n i and the propagator at the end of
the evolution is U ≈

P
ne

−iϕnðTÞjψD
n ihψD

n j≡ Ū≡ e−iH̄T ,
where ϕnðTÞ are the dynamic phases, while the geometric
phases vanish because λðtÞ returns to its original value [52].
In this manner U takes the same form as UD and the
adiabatic average Hamiltonian for the soft quantum control
scheme

H̄ ¼
X

n

½ϕnðTÞ=T�jψD
n ihψD

n j; ð8Þ

is diagonal in the same basis as HD and includes all the
high-order energy shifts. In the following, we illustrate our
general theory via two important applications.
Improved RWA.—Here we demonstrate how the soft

quantum control mechanism efficiently eliminates the non-
energy-conserving (or counterrotating) terms over a con-
tinuous time interval even for long evolution times. The
existence of the nonenergy-conserving terms is due to the
limit of available resources for selective control on realistic
quantum systems (e.g., singlet-triplet qubits in semicon-
ductor quantum dots [53,54]). As an example, we consider
a control qubit (0) and two equally strong coupled resource
qubits (1,2) (e.g., singlet-triplet qubits [53,54]) with the
interaction

Hint ¼ cλðtÞσx0ðσx1 þ σx2Þ ¼ cλðtÞðP0;1 þQ0;1 þ σx0σ
x
2Þ;
ð9Þ

where σαj (α ¼ x, y, z) denotes a Pauli operator for the
jth qubit, P0;1 ¼ σþ0 σ

−
1 þ H:c: with 2σ�j ¼ σxj � iσyj , and

Q0;1 ¼ σþ0 σ
þ
1 þ σ−0 σ

−
1 . The coexistence of P0;1 andQ0;1 can

be due to the nature of systems (see [54] for a realistic
example). We aim to interact qubit 0 purely with qubit 1 via
the flip-flop term P0;1 without involving the perturbation

Q0;1. Therefore the energies HS ¼ ðω=2Þðσz0 þ σz1Þ þ
ðω2=2Þσz2 are chosen such that qubit 2 is off resonant with
ω2 ¼ 3ω. The corresponding target Hamilton

Htarget ¼
1

2
ω̃ðσz0 þ σz1Þ þ

1

2
ω̃2σ

z
2 þ c̃ðσþ0 σ−1 þ H:c:Þ;

ð10Þ

with the associated propagator Utarget ¼ e−iHtargetT can be
used to generate high-fidelity swap gate between qubits 0
and 1. The corrected energies and interaction marked with a
tilde can be obtained by using the adiabatic average
Hamiltonian according to Eq. (8).
In Fig. 2(a) and with the red solid lines in (c) and (d), we

show the gate fidelities F ¼ jTrðUtargetU†Þj=TrðUU†Þ [55]
[here U ¼ T e

−i
R

T=2

−T=2
ðHSþHintÞdt] with respect to the target

evolution Utarget for the standard coupling λðtÞ ¼ 1, while
in Fig. 2(b) and with the blue dashed lines in (c) and (d) the
fidelities are plotted for a situation involving the soft
quantum modulation in Eq. (6). An inspection of these
plots reveals that the soft coupling approach results in much
higher fidelities in a wide range of parameters, even for
strong coupling regimes ðc > ωÞ and a wide range of
evolution times. In contrast, the standard approach does not
achieve a high fidelity to the target Hamiltonian because an
efficient elimination of the oscillating terms requires weak
couplings and longer averaging periods. Naturally during
these times, relaxation and decoherence processes will
decrease the fidelity further. Furthermore, locating the

FIG. 2. Fidelities under RWA. (a) Fidelity to the target
evolution without unwanted coupling by using the constant-
amplitude coupling. (b) As in (a) but using a Gaussian soft
coupling with σ ¼ T=ð4 ffiffiffi

2
p Þ and 1=λ0 ¼

ffiffiffiffiffi
2π

p
σerf½T=ð2 ffiffiffi

2
p

σÞ�
such that we obtain the same target evolution. Curves in (c) and
(d) show cross-sectional plots in the constant-amplitude case of
(a) [red solid lines], or for the Gaussian shaped coupling case of
(b) [blue dashed lines]. It is easy to see that the soft quantum
control scheme keeps a high fidelity even for a relatively large
ratios c=ω at long evolution times T.
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points of high fidelity in the standard approach becomes
increasingly difficult when more qubits are involved (cf. the
two-qubit example in the Supplemental Material [56]).
Note that our approach is fundamentally different from

adiabatic elimination [60,61]. Adiabatic elimination is
aimed at coupling certain target levels by a virtual transfer
of excitations through other mediator states that are
removed from the dynamics, thus generating an evolution
in the reduced Hilbert space of the target states. Instead our
objective is to efficiently suppress unwanted interaction
terms in the Hamiltonian through a soft modulation of the
coupling constants, without reducing the dimension of the
whole Hamiltonian and without having to use other states
as mediators. Hence our method allows us to switch off
unwanted interactions among the qubits in a highly
selective manner and to perform high-fidelity quantum
gates as we will demonstrate later.
Selective qubit addressing.—The soft quantum control

mechanism allows high-fidelity interactions between
weakly coupled qubits while it avoids perturbations that
arise from the presence of strongly coupled qubits. Since

the NV center in diamond is an excellent platform for
quantum information processing [28–30], quantum net-
works [32,33], and quantum sensing [5,6], we consider a
network consisting of an NVelectron spin and its surround-
ing 13C nuclear spins (see [56] for details of the model).
The electron-nuclear hyperfine coupling offers a medium

to control the 13C nuclear spins via the NVelectron. Under
pulsed DD [41–43,47] or a continuous drive [37,38] on the
NV electron states ms ¼ 0 and, say, ms ¼ −1, the 13C
Larmor frequencies ωj are shifted by hyperfine coupling,
providing the frequency differences δj;n ¼ ωj − ωn for
selective addressing [56]. However, the differences δj;n
and the electron-nuclear interactions are typically of the
same order of magnitude, imposing a challenge on highly
selective coupling.
To demonstrate the advantages of the soft quantum

control, we compare different protocols in Fig. 3 by using
a model with two spectrally close nuclear spins (their
coupling is small but is taken into account in simulations).
As shown in Fig. 3(a) a frequency scan obtained via a
continuous, constant drive [37,38] does not resolve the two
13C nuclei even for a longer sensing time T because of the
slow power-law-decay of the signal around the resonance
position.
Because pulsed DD sequences can be implemented

easily in current experimental setups and coherent control
on NV electron and nuclear spins longer than one second
has been experimentally implemented with over ten thou-
sands of DD pulses [30], we apply a DD sequence to
preserve the coherence of the NV electron qubit and to
realize the Hamiltonian [56]

H ¼ −
1

8
fkDDσ

z
0

X

j>0

a⊥j σxj −
X

j>0

1

2
δj;nσ

z
j; ð11Þ

for addressing the nuclear frequency ωn. Both δj;n and a⊥j
are determined by the hyperfine coupling at the nuclear
locations.
The DD protocol of adaptive-XY (AXY) sequences [47]

provides better performance [9,47] over standard DD
sequences [39,40] because it has strong robustness against
control errors and allows us to tune fkDD in a desirable
manner. As shown in Fig. 3(b), by using a smaller fkDD
more signal details are revealed. However, this approach
also reduces the coupling to the target spins.
By changing fkDD in the AXY sequences for every unit

with four composite pulses, we implement the Gaussian
soft modulation λðtÞ in a digitized manner while preserving
the robustness of the sequences against experimental
control errors (see [56] for details). The resulting
Gaussian AXY significantly enhances and resolves the
weak spin signal by using the soft modulation to eliminate
the strong unwanted perturbation [see Fig. 3(c)]. In
addition, it removes all the side peaks around the spin
resonances, which is of great advantage when fitting dense

FIG. 3. (a)–(c) Signal of transition probabilities, originating
from two nuclear spins (ω1 ¼ 2π × 441.91 kHz and
ω2 ¼ 2π × 437.54 kHz, see [56] for more details). (a) Hart-
mann-Hahn resonance spectrum with a total sensing time T ≈
54 μs (red) or T ≈ 435 μs (blue). (b) Signal for AXY sequences
(red solid line) at the third harmonic with 128 composite pulses
each has five elementary π pulses). The single-spin contributions
are drawn with dashed lines and corresponding shading, and f3 ¼
0.271 is chosen to maximize the one from the first spin. The target
signal centered at the vertical dashed-dotted line is destroyed by
the strong perturbation from the unwanted second spin. (c) Vary-
ing f3 of the AXY sequences in (b) according to the Gaussian
shape clearly resolves the two spins. (d) The fidelity (blue solid
curve) of the gate Utarget ¼ e−iðπ=4Þσ

z
0
σx
1 ⊗ I2 as a function of the

microwave detuning error Δ by using the Gaussian AXY
sequence with a Rabi frequency Ω ¼ 2π × 20 MHz in the
rectangular pulses. The red dashed line is the case for a mismatch
of 5% in Ω. To realize the gate Utarget, f3 has been reduced by a
factor of 2 when using the parameters indicated by the vertical
dash-dotted line in (c).
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signals [22] and avoids false identification of the signal
peaks, in particular at the presence of spurious resonances
[62–64]. Furthermore, it allows robust, high-fidelity quan-
tum gates on the desired nuclear qubits. We calculate the
fidelity for the gate Utarget ¼ expð−iπσz0σx1=4Þ ⊗ I2 for the
same parameters as the spectrum given in Fig. 3(c), but
choose f3 such that the target spin only performs a half
rotation. We include an energy shift of the strongly coupled
nuclear spin equivalent to the first example above. The
fidelity is shown in Fig. 3(d) for different values of possible
pulse errors. It is always well above 99%. On the contrary,
the fidelities achieved by the Hartmann-Hahn or AXY
protocol under the same condition are very low (e.g., 57%
for AXY) because of the poor spin addressing [see
Figs. 3(a) and 3(b)]. Note that the enhanced spectral
resolution by the soft control can be used to improve the
controllability of interacting spin clusters [7–9,16,30] and
nuclear-spin decoherence-free subspace [29].
Conclusions.—We proposed the mechanism of soft

quantum control which enables highly selective coupling
between different on-resonance constituents of composite
quantum systems. The method introduces a time-dependent
modulation of the coupling constants in addition to the
matching of resonance frequencies. This results in an
exponentially improved suppression of off-resonant cou-
plings. Furthermore, we establish an adiabatic average
Hamiltonian theory to describe interacting systems even
under the presence of strong coupling terms to undesired
parts of the Hilbert space. We showed two direct applica-
tions of our protocol: an improved RWA and, when
combined with DD techniques, the addressing of weakly
coupled nuclear spins under the presence of strong pertur-
bations, originating from impurities with close resonance
frequencies. The method is of general applicability and can
be useful for the coherent manipulations of quantum
registers and spectroscopic challenges in a wide range of
systems such as stoichiomeric rare earth ion systems, spin
defects, and single dopants in solids, as well as spin-boson
systems.
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