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We present the first systematic observation of scaling of thermal hysteresis with the temperature
scanning rate around an abrupt thermodynamic transition in correlated electron systems. We show that
the depth of supercooling and superheating in vanadium sesquioxide (V2O3) shifts with the temperature
quench rates. The dynamic scaling exponent is close to the mean field prediction of 2=3. These
observations, combined with the purely dissipative continuous ordering seen in “quench-and-hold”
experiments, indicate departures from classical nucleation theory toward a barrier-free phase ordering
associated with critical dynamics. Observation of critical-like features and scaling in a thermally induced
abrupt phase transition suggests that the presence of a spinodal-like instability is not just an artifact of the
mean field theories but can also exist in the transformation kinetics of real systems, surviving fluctuations.

DOI: 10.1103/PhysRevLett.121.045701

Metastable states do not exist in equilibrium statistical
mechanics, as any legitimate free energy must be convex in
the thermodynamic limit [1]. But many real systems do
spontaneously fall out of equilibrium in a window of
thermal hysteresis around the abrupt phase transition
(APT) [2]. The accompanying nonergodic behavior—
arrested kinetics [3,4], spatial inhomogeneity [5,6] and
phase coexistence [7–9], and rate dependence [10–12]—is
well documented.
Within the mean field (MF) picture, this metastable

phase is predicted to abruptly terminate at the spinodals, the
two values of field or temperature where the barrier against
nucleation vanishes [2,7,13–18]. The analogy between the
MF spinodals and the critical point in the power law
divergence of susceptibility [2,13,18–20] and their being
fixed points under renormalization group transformation
[17,21] has long been discussed [2,18,22]. Except for the
case of strictly athermal systems [7,14,24], these ideas were
never taken seriously because one would expect this
singularity to be physically inaccessible; fluctuations
accompanying any finite-temperature phase transformation
would necessarily yield pathways involving nucleation
before the spinodal is experimentally reached [1,13,20,25].
Nevertheless, long-ranged forces arising, for example,

due to the accompanying structural transition [26] may to
an extent [27] suppress fluctuations. This will naturally
lead to deep supersaturation and thermal hysteresis in the
phase transformation and thus take the system beyond the
regime of the classical nucleation theory [28–32]. As the
nucleation barriers get smaller, simulations show spatially
diffused and continuous ordering mechanisms [29], where

the dynamic limit of metastability can extend to the critical
nucleus shrinking to less than one molecule [30]. Hence,
operationally, the phase ordering may actually mimic the
MF spinodal behavior, with fluctuations only making
quantitative corrections. In fact, there is increasing theo-
retical evidence that the essence of this MF picture, i.e., the
existence of singular fixed points, is retained in the
dynamical behavior even for model systems with short-
ranged interactions at finite temperature [21,33].
Focusing on the APT in V2O3 [5,34–36], in this Letter,

we report the first experimental observation of such dressed
MF behavior in phase ordering via the study of dynamic
hysteresis.
Experiments.—Figures 1(a) and 1(b) show quasiequilibri-

um differential thermal analysis (DTA) and transport measu-
rements done at temperature ramp rates of<0.5K=min using
polycrystalline V2O3 (see Supplemental Material [37]); the
transition is strongly hysteretic and the abrupt change in
resistance is accompanied by latent heat L ≈ 2 kJ=mole
(∼15RTc) [53]. This APT is known to arise due to three
simultaneous—electronic, structural, and magnetic—
transformations [Fig. 1(b), inset] [34,35]. That the window
of thermal hysteresis around ∼158 K does correspond to the
metastable region where the physical observables are no
longer state variables is seen in the multivaluedness of the
sample resistance in Fig. 1(c). These minor hysteresis
loops were drawn using the temperature protocol shown in
Fig. 1(c) (inset).
Dynamic hysteresis.—Figures 2(a) and 2(b) show the

DTA and the resistance data for linear temperature ramp
rates, between 0.2 and 60 K=min. We observe a systematic
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delay in the onset temperature that is dependent on the
temperature ramp rate R. A model-independent way to
depict this dynamic shift is to plot the rate-dependent
depths of supercooling and superheating. This is done in

Fig. 2(c) where the dynamically renormalized shifts ΔTðRÞ
in the observed transition temperature Theat

obs ðRÞ and
Tcool
obs ðRÞ are seen to obey the scaling relationship ΔTðRÞ ¼

jTi
0 − Ti

obsðRÞj ∝ Rϒ, i ¼ heat (heating) or cool (cooling)
over two decades of ramp rates. Theat

0 and Tcool
0 were used as

free parameters, varied to yield the best straight lines in the
log-log graph [37]. Theat

0 ≈ 162.77 K and Tcool
0 ≈ 153.35 K

thus correspond to the transition temperatures under quasi-
static heating and cooling, respectively. The fact that Theat

0

and Tcool
0 are not known a priori make the estimation of ϒ

difficult. The Supplemental Material [37] discusses this
further. The values of Ti

0, which minimize the error in the
straight line fits (on log-log scale), yield ϒ ≈ 0.62 for both
cooling and heating. Another independent estimate yields
ϒ ¼ 0.62� 0.06 for heating and ϒ ¼ 0.64� 0.09 (cool-
ing) [37]. It is significant that one should observe this
symmetry. The above analysis was performed for the DTA
data. It can be seen that the resistance data, where there is a
greater ambiguity in extracting the actual transition temper-
atures, also nevertheless suggest that ϒ ≈ 2=3.
To understand these observations, note that, in the MF

picture, the order parameter ϕ would evolve by the same
equation that is used for critical dynamics. For noncon-
served ϕ, this is the dissipative time-dependent Landau
(TDL) equation or model A [38,39]

∂ϕ
∂t ¼ −λ

δ

δϕ
fðϕ; TÞ þ ζðtÞ: ð1Þ

Here fðϕ; TÞ is the free energy, and λ is a kinetic parameter.
The stochastic force ζðtÞ is zero under MF approximation.
As a consequence of the above dynamics, critical-like
slowing down would be observed around the transition if
(and only if) the system approaches a genuine bifurcation
point where the dynamic susceptibility is singular. Under
the sweep of field or temperature with time, a systematic
delay in the onset of phase switching is predicted with a
definite scaling form. The change in the area AðRÞ of the
hysteresis loop (or, equivalently, the shift in the transition
point) must dynamically scale with R, the rate of change of
field H, or temperature T, as a power law [39,40,54–58]

AðRÞ ¼ A0 þ aRϒ; ð2Þ

where A0 is the area of the quasistatic hysteresis loop.
Under the deterministic evolution demanded by the MF
theory, the instabilities are the spinodals Theat

0 and Tcool
0

determined above. Remarkably, numerical calculations of
the different (spatially averaged) free energies describing
field- or temperature-induced APT all yield ϒ ¼ 2=3
[37,54,56,57,59,60], rather close to what we have exper-
imentally observed.
This universality has been justified by dynamic scaling

arguments [39]. ϒ ¼ 2=3 can indeed be recovered under
the conditions of the linear ramp of the field [40] or

(a) (b)

(c)

FIG. 2. (a) DTA signal and (b) the sample resistance as a
function of temperature for different linear ramp rates. (c) Shift in
the transition temperature with temperature scanning rate ΔTðRÞ.
The temperature shifts inferred from the DTA extrema are best
fitted to ϒ ¼ 0.62 [37]. The transport data also approximately
obey ΔTðRÞ ∝ R2=3.

FIG. 1. (a) Exothermic (∼153 K) and endothermic (∼162 K)
latent heat peaks in the DTA experiment. (Inset) Schematic of the
setup [37]. (b) The resistance changes over many orders of
magnitude around the same temperature. (a),(b) Quasiequili-
brium properties measured at slow temperature ramp rates
(≤ 0.5 K=min). (Inset) Phase diagram of V2O3 in the pres-
sure-temperature plane with antiferromagnetic insulator (AFMI),
paramagnetic insulator (PI), and paramagnetic metal (PM) phases
separated by first-order lines [34]. The arrow corresponds to the
temperature-dependent transition (at ambient pressure) studied in
this Letter. This transition also corresponds to a structural change
from a rhombohedral (PM) to monoclinic (AFMI) phase.
(c) Metastability of the hysteretic region is seen in the multi-
valuedness of the sample resistance. The fraction of the phase-
transformed material within this region can be controlled by the
sample’s thermal history. (Inset) The corresponding time depend-
ence of the temperature sweep.
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temperature [40] if the other critical exponents are chosen
to be those belonging to Fisher’s ϕ3 theory with imaginary
coupling that describes the Yang-Lee-edge singularity [41].
This is reasonable because of the known equivalence within
the MF Ising model of the Yang-Lee edge (imaginary
fields, T > Tc) with the spinodal (real field, T < Tc)
through analytic continuation [65].
Free energy and order parameter.—Because of the

interplay of lattice, spin, and orbital degrees of freedom
that gives rise to three simultaneous transitions in V2O3,
the temperature-induced APT is more complicated than the
Ising-like transition at the Mott critical point [67]. A
phenomenological extension to the Ising model that will
make it a temperature-driven APT and also, albeit in a
rather simplistic way, capture the accompanying structural
transition is the compressible Ising model [37,42,43]. Here
the lattice compressibility is coupled to the spin via the
exchange coupling constant J of the Ising model [37]. In
the mean field approximation, the resulting dimensionless
free energy per spin can be written as [37]

f¼ T
2Tc

½ð1þϕÞ lnð1þϕÞþ ð1−ϕÞ lnð1−ϕÞ�−ϕ2

2
− ξϕ4:

ð3Þ

The scalar nonconserved order parameter ϕ (the average
“magnetization” per site) is identified with the fraction of
the insulating phase. jϕj < 1 at any nonzero temperature
and Tc is the critical temperature. For ½T=ð12TcÞ� − ξ < 0,
one would observe an APT during thermal cycling.
Figure 3 shows a method to experimentally estimate ϕ

at the given temperature using DTA. ϕ is taken to be
proportional to the integrated area around the DTA dip
(peak) for the cooling (heating) curves in Figs. 3(a)
and 3(b), respectively, as a function of the temperature
of approach and is plotted in Fig. 4. A 1000 s wait at the
temperature of approach ensures quasistatic conditions.
Also in Fig. 4, ϕ is independently estimated from the
resistance data using McLachlan’s effective medium theory
[66] to approximately handle the percolative nature of the
transport [37].
Remarkably, the two free parameters of the model, ξ

and Tc, are already fixed by the experimentally inferred
spinodal temperatures. Tc ≈ 153.5 K and the value of ξ is
numerically determined to be 0.154 from the value of the
other spinodal temperature to be 162.5 K. Thus to describe
the dynamics [Eq. (1)], the remaining free parameter λ is
also fixed by fitting any one of the dynamic hysteresis
curves; λ ¼ 3.5 s−1 was obtained by fitting the curve for the
inferred order parameter (fraction of the insulator phase) by
evolving Eq. (1) for heating with a linear temperature ramp
at the rate of 50 K=min. In the simulation discussed in the
Supplemental Material [37], a hysteresis scaling exponent
of 2=3 is observed, as is expected from generic arguments
given above. The results for the inferred order parameter

from the compressible Ising model are also shown in Fig. 4.
The transition was given a very small but finite width by
assuming that the sample is an inhomogeneous ensemble
with a Gaussian distribution of Tc ¼ 153.8 with a standard
deviation of 0.18 K.
Phase ordering in quench-and-hold experiments.—

Starting from the initial temperature of 100 K (240 K),
the experimental contour plots in Fig. 5 are obtained by
rapidly (at the rate of 50 K=min) heating (cooling) the
sample to different target temperatures Tw slightly above
(below) the quasistatic transitions temperatures [37]. Once
Tw was reached, the temperature was kept constant and the

(a) (b)

FIG. 3. Reversal curves for (a) cooling and (b) heating mea-
sured in DTA to map out the limits of stability and the width of
the spinodal region and directly estimate the change in the order
parameter across the transition. (Insets) Corresponding time
dependence of temperature. (a) Starting with the initial temper-
ature of 171.5 K, the sample is cooled to a set temperature Ts

i ,
i ¼ 1. On reaching this set temperature, the system stays there for
1000 s to reach the equilibrium value. The system is heated back
to 170 K and the process is repeated with a slightly higher set
temperature, such that Ts

2 > Ts
1. The area of the latent heat peak at

∼165 K is a measure of the amount of material transformed, the
order parameter at Ts

i . This allows us map out the cooling
spinodal region. (b) Shows the same idea implemented for the
heating spinodal. The order parameter extracted from these
measurements is shown in Fig. 4(a).

FIG. 4. (∘) The quasistatic (QS) order parameter ϕ vs temper-
ature extracted from DTA using data in Fig. 3. (□; �) ϕ inferred
from resistance measurements. (—) Compressible Ising model.
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time evolution of the resistance at different Tw is plotted in
terms of the insulator fraction [37,66]. Figure 5 demon-
strates that (in a qualitative sense) the phase transformation
proceeds symmetrically, with similar timescales. Given
that the metastable phase is bounded also on the low-
temperature side makes the physics of arrested kinetics of
the metastable phase qualitatively different from that
observed in glasses.
The corresponding calculation [using Eqs. (1) and (3)]

for the noise-free evolution of the order parameter after
shock heating is also shown in Fig. 5. With Tc, ξ, and λ
already fixed, the entire contour plot has no free parameter.
The qualitative match with the highly constrained MF
calculation supports the picture of phase transformation
occurring via barrier-free continuous ordering. Calculation
for the cooling quench, due to its sensitivity on the initial
conditions, is not discussed.
Conclusions.—The unreasonable efficacy of the MF

theory in capturing the essence of the transformation in
V2O3 gives credence to the idea that—and this is the key
result of our work—spinodal-like instabilities can be
present in a real material exhibiting a finite-temperature
abrupt phase transition. Scaling of dynamic hysteresis with
the observed exponent and barrier-free phase ordering are
both manifestations of these instabilities.
At least for phase transformation under such deep

supersaturation, recent work on very different aspects of
the problem suggests that fluctuations may not fundamen-
tally affect these qualitative aspects. Within the Ising model
in thermal equilibrium (and T < Tc), the MF spinodal
corresponds to the two values of magnetic field demarcat-
ing the limit of metastability. Rigorous mathematical
analysis shows that the effect of fluctuations (or, equiv-
alently, making the range of interactions finite) is simply to
rotate this spinodal magnetic field in the complex plane,
giving it a nonzero imaginary value [32,65]. Thus, in
analogy with the Yang-Lee argument that the complex
zeros of the partition function only touch the real axis in the

thermodynamic limit, fluctuations essentially mimic finite-
size effect [32]. Remnants of this singularity should be
discernable in the broadened transition if the range of the
potential is large enough, as it might be for V2O3 due to the
deep supersaturation. Furthermore, for a dynamically
changing control parameter, the system may get too slug-
gish in the vicinity of the transition (because of the critical-
like slowing down) to turn on these fluctuations before the
transition has occurred. Numerical solutions of model A
[Eq. (1)], now also including the stochastic term (ζ ≠ 0), do
indeed show that fluctuations only slightly change the value
of the exponent [39,68] describing this dynamic overshoot,
still not far from our observations.
While these arguments make the experimental observa-

tions plausible, it is emphasized that the metastable phase
is properly only to be defined in a dynamical sense.
Dynamically emerging spinodal-like singularities have
been seen in simulations of Lennard-Jones fluids [29–
31], binary alloys [69], elementary models [21,33], and
perhaps even in some other experiments [70]. Thus, while
the precise nature of the kinetic spinodals is yet to be
determined, their existence in specific contexts seems
real enough. These instabilities have been variously
interpreted—for example, as the boundary between the
regions of homogeneous and heterogenous nucleation [69].
Such strongly hysteretic “zeroth-order” transitions [71]

thus form a new class of transitions that may potentially be
observed in many other systems, including similar oxides
undergoing metal-insulator transition [6,9], manganites
[10], intermetallic shape-memory alloys, and magneto-
caloric materials [72]. A better understanding of the phase
transformation kinetics in such systems should help chart
the uncertain territory of metastable states in the language
of critical phenomena.
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