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Strong interactions that favor chiral p-wave pairing, combined with strong pair breaking by confining
boundaries, are shown to lead to new equilibrium states with different broken symmetries. Based on a
strong-coupling extension of the Ginzburg-Landau theory that accurately accounts for the thermodynamics
and phase diagram of the bulk phases of superfluid 3He, we predict new phases of superfluid 3He for
confined geometries that spontaneously break rotational and translational symmetry in combination with
parity and time-reversal symmetry. One of the newly predicted phases exhibits a unique combination of
chiral and helical order that is energetically stable in cylindrical channels of radius approaching the Cooper
pair coherence length, e.g., R ∼ 100 nm. Precise numerical minimization of the free energy yields a broad
region of stability of the helical phase as a function of pressure and temperature, in addition to three
translationally invariant phases with distinct broken spin and orbital rotation symmetries. The helical phase
is stable at both high and low pressures and favored by boundaries with strong pair breaking. We present
calculations of transverse NMR frequency shifts as functions of rf pulse tipping angle, magnetic field
orientation, and temperature as signatures of these broken symmetry phases.
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Introduction.—The superfluid phases of 3He are para-
digms for spontaneous symmetry breaking in condensed
matter and quantum field theory [1,2]. The bulk A and B
phases are BCS condensates of spin-triplet p-wave Cooper
pairs [3]. The broken symmetries of these phases, which
are well established, underpin the nontrivial topologies
of both ground states [4,5]. However, the bulk phases are
only two realizations of the 18-dimensional manifold of
spin-triplet p-wave condensates. When 3He is subjected to
a confining potential on scales approaching the Cooper pair
coherence length, ξ0 ≈ 160–770 Å depending on pressure,
new ground states with novel broken symmetries are
stabilized [6–9].
In this Letter we report theoretical predictions of the

equilibrium phases of superfluid 3He when confined in
quasi-one-dimensional channels with radial confinement
ranging from R ¼ 2–20ξ0ðpÞ. Among these phases is a
novel “helical” phase of 3He that spontaneously breaks both
time-reversal and translational symmetry along the channel.
The broken translational symmetry is realized as a double
helix of disclination lines of the chiral axis confined on
the boundary of the cylinder walls. The double-helix
phase is predicted to be stable over a large region of the
pressure-temperature phase diagram for channels with
radius R ¼ 100 nm.
Ginzburg-Landau theory.—Our results are based on a

strong-coupling extension of Ginzburg-Landau (GL)
theory that accurately reproduces the relative stability of
the bulk A and B phases, including the A-B phase transition

[8]. The GL theory is formulated as a functional of the order
parameter, the condensate amplitude for Cooper pairs,
hψσðpÞψσ0 ð−pÞi in the spin-momentum basis. For spin-
triplet p-wave Cooper pairs the order parameter can be
expressed in terms of a 3 × 3 matrix Aαi of complex
amplitudes that transforms as the vector representation of
SOð3ÞS with respect to the spin index α, and as the vector
representation of SOð3ÞL with respect to the orbital
momentum index i. In cylindrical coordinates the order
parameter matrix may be represented as

A ¼

0
B@

Arr Arϕ Arz

Aϕr Aϕϕ Aϕz

Azr Azϕ Azz

1
CA; ð1Þ

where we choose aligned spin and orbital coordinate axes.
The GL free-energy functional,

Ω½A� ¼
Z
V
d3rðfbulk½A� þ fgrad½A�Þ; ð2Þ

is expressed in terms of a bulk free-energy density [10],

fbulk½A� ¼ αðTÞTrðAA†Þ þ β1jTrðAATÞj2
þ β2½TrðAA†Þ�2 þ β3Tr½AATðAATÞ��
þ β4Tr½ðAA†Þ2� þ β5Tr½AA†ðAA†Þ��; ð3Þ

and the gradient energies,
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fgrad½A� ¼K1A�
αj;kAαj;kþK2A�

αj;jAαk;kþK3A�
αj;kAαk;j; ð4Þ

where A† (AT) is the adjoint (transpose) of A, Aαi;j ¼ ∂jAαi

and the transformation of the gradient free energy from
the Cartesian representation to cylindrical coordinates
given in Eq. (6) of Ref. [8]. The material parameters α,
fβiji ¼ 1;…; 5g, and fKaja ¼ 1; 2; 3g multiplying the
invariants defining the GL functional are determined by
the microscopic pairing theory for 3He. In weak-coupling
theory these parameters are given in Refs. [8,10].
The Ginzburg-Landau theory is widely used in studying

inhomogeneous superconducting phases, notably vortex
states in type II superconductors [11], as well as Fulde-
Ferrell-Larkin-Ovchinnikov states at high field and low
temperatures [12]. In the case of 3He a strong-coupling
extension of the weak-coupling GL theory that accounts
for the relative stability of the bulk A and B phases, and
specifically the A-B transition line, TABðpÞ for pressures
above the polycritical point p≳ pc was introduced in
Ref. [8]. The strong-coupling functional is defined by
the corrections to the fourth-order weak-coupling material
parameters,

βiðp; TÞ ¼ βWC
i (p; TcðpÞ)þ

T
Tc

ΔβSCi ðpÞ; ð5Þ

with ΔβSCi ðpÞ ¼ βi½p; TcðpÞ� − βWC
i ½p; TcðpÞ�. The weak-

coupling parameters βWC
i ½p; TcðpÞ� are calculated from a

Luttinger-Ward formulation of the weak-coupling micro-
scopic free-energy functional and evaluated using the
known pressure-dependent Fermi-liquid material parame-
ters, provided in Table I of Ref. [8]. TheΔβSCi ðpÞ have been
obtained from analysis of measurements of the strong-
coupling enhancement of heat capacity jumps, NMR
frequency shifts, and the Zeeman splitting of superfluid
transition in a magnetic field [13]. The results we report are
based on the strong-coupling parameters reported in Table I
of Ref. [8]. We emphasize that the extended GL functional
accounts for the relative stability of competing phases at
temperatures well below TcðpÞ, including the bulk A and B
phases at high pressures [8] and the A to stripe phase
transition in thin films of 3He [9], and in the former case has
been validated by our microscopic calculations of TABðpÞ
and the strong-coupling beta parameters ΔβSCi ðpÞ based on
the formulation of the strong-coupling theory developed in
Refs. [14–17].
The geometry we consider here is an infinitely long

cylindrical channel of radius R. For the channel walls we
use boundary conditions that include a variable order
parameter “slip length” bT inspired by the analysis of
Ambegaokar, de Gennes, and Rainer [18], as well as the
influence of the boundary curvature [19]. The resulting
conditions at r ¼ R are [8]

Aαrjr¼R ¼ 0;
∂Aαz

∂r
����
r¼R

¼ −
1

bT
Aαzjr¼R;

∂Aαϕ

∂r
����
r¼R

¼
�
1

R
−

1

bT

�
Aαϕjr¼R; ð6Þ

where the transverse extrapolation parameter b0T ≡ bT=ξ0
varies between the b0T → 0 (maximal pair breaking) and
b0T → ∞ (minimal pair breaking) limits.
The equilibrium order parameter is obtained by mini-

mizing the GL free energy functional, i.e., by solving the
Euler-Lagrange equations δΩ½A�=δA† ¼ 0. When restricted
to translationally invariant states, we obtain four phases
stable in different regions of the p-T phase diagram: the Pz
phase with Cooper pairs nematically aligned along the axis
of the cylindrical channel is the first unstable mode from
the normal state. At a lower temperature, Cooper pairs with
orbital wave functions transverse to z become unstable.
Strong coupling and strong pair breaking on the boundary
lead to two distinct chiral phases with different symmetries.
The first is a second-order transition from the Pz phase
to the AC2

phase with the chiral axis aligned in the plane
perpendicular to the z axis. The AC2

phase spontaneously
breaks the SOð2Þ rotation symmetry. At lower temperatures
the cylindrically isotropic chiral phase ASOð2Þ is stabilized,
and at even lower temperatures, the polar-distorted BSOð2Þ
phase is favored. Both ASOð2Þ and BSOð2Þ phases are
separated by first-order transitions [8].
Dynamical instability.—The chiral AC2

phase is an
inhomogeneous analog of bulk 3He-A, with a spatially
averaged angular momentum (chiral) axis hl̂i aligned along
a fixed but arbitrary direction in the r-ϕ plane, as shown in
Figure 1. For maximal pair breaking boundary conditions,
the AC2

order parameter is given by

FIG. 1. (left) The chiral axis l̂ðrÞ for the AC2
phase at

p ¼ 26 bar, T ¼ 0.7Tc with strong pair breaking (b0T ¼ 0.1).
The chiral axis is confined in the r-ϕ plane. The arrow color
density is scaled by the amplitude ðΔ2

r þ Δ2
ϕÞ1=2. The red and

blue dots locate the two disgyrations, which support super-
currents propagating along þz and −z, respectively. (right)
Supercurrent isosurfaces in the SA phase, calculated using the
full order parameter in Eq. (1) of the Supplemental Material [20].
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Aαi ¼ d̂α cos

�
πr
2R

�

× fΔ0
zẑi þ iΔ00

r ½cosðϕ − ϑÞr̂i − sinðϕ − ϑÞϕ̂i�g; ð7Þ

where ϑþ π=2 is the angle of the average direction of the
angular momentum axis h⃗li in the r − ϕ plane. The in-plane
chiral axis spontaneously breaks the continuous SOð2Þ
rotational symmetry of the confining potential. The corre-
sponding continuous degeneracy of the AC2

phase implies
the existence of a Nambu-Goldstone (NG) mode associated
with the massless, long-wavelength excitation of the
orientation ϑ of h⃗li.
The dynamical equation for the NG mode is obtained

from the action for the space-time fluctuations of the
Cooper pairs relative to the AC2

ground state Aαiðr; tÞ ¼
Aαiðr; tÞ − A

AC2
αi ðrÞ,

S ¼
Z
V
dtd3rfτTrð _A _A†Þ − U½A�g; ð8Þ

where U½A� is the effective potential derived from an
expansion of the free-energy functional Ω½A� to quadratic
order in the fluctuations A of order parameter. The addi-
tional invariant represents the kinetic energy of the Cooper
pair fluctuations, with the effective inertia given by τ ¼
7ζð3ÞNf=48ðπkBTcÞ2 in the weak-coupling BCS limit [21],
where Nf is the normal-state density of states at the
Fermi energy.
For the NG mode the action is a functional of the

degeneracy variable corresponding to space-time fluctua-
tions of the orientation of the chiral axis ϑðt; zÞ and the
fluctuations of the polar component of the Cooper ampli-
tude δ00z ðt; zÞ that couples linearly to ϑðt; zÞ through the
gradient energy. The order parameter that incorporates
these fluctuations is

Aαi ¼ d̂α cos

�
πr
2R

�
fiΔ00

r cos½ϕ − ϑðt; zÞ�r̂i
− iΔ00

r sin½ϕ − ϑðt; zÞ�ϕ̂i þ Δ0
zẑig

− iδ00z ðt; zÞ sin
�
πr
R

�
sin½ϕ − ϑðt; zÞ�d̂αẑi; ð9Þ

where Δ00
r and Δ0

z take their equilibrium values found by
minimizing the free-energy functional with the order
parameter in Eq. (7). Since the fluctuations depend only
on time t and the coordinate z along the channel, we can
integrate out the dependences on r and ϕ. We then express
the action in Fourier space, in which case we obtain a sum
over independent Fourier modes of the form ϑðt; zÞ ¼
ϑ cosðωtþQzÞ and δ00zðt; zÞ ¼ δ00z sinðωtþQzÞ. The Euler-
Lagrange equations reduce to eigenvalue equations for the
coupled mode amplitudes,

ω2ϑ ¼ c2Q2ϑþ 8ð3π − 4Þ
9ðπ2 − 4ÞΔ00

r

�
πc
R

�
cQδ00z ; ð10Þ

ω2δ00z ¼
1

τ

�
αþ

�
1 −

16

9π2

�
ðβ13 þ β245ÞðΔ002

r þ Δ02
z Þ

þ 3c2Q2 þ
�
πc
R

�
2
�
1þ 2

π2
Cinð2πÞ

��
δ00z

þ 16ð3π − 4ÞΔ00
r

9π2

�
πc
R

�
cQϑ; ð11Þ

where Cinð2πÞ ¼ R
2π
0 duð1 − cos uÞ=u. The weak-coupling

relation K1 ¼ K2 ¼ K3 ≡ K has been used, and we intro-
duced the velocity c≡ ffiffiffiffiffiffiffiffiffi

K=τ
p ¼ vf=

ffiffiffi
5

p
, where vf is the

Fermi velocity.
There are two eigenmodes corresponding to bosonic

excitations with dispersions ω�ðQÞ. The low-frequency
mode ω−ðQÞ is identified as the NG mode with an
excitation that is a pure rotation by ϑ, with a linear
dispersion ω−ðQÞ ∝ Q for Q → 0. Indeed, the AC2

phase
supports low-frequency bosonic excitations corresponding
to oscillations of the chiral axis, as shown in Fig. 2 for
R ¼ 100 nm, p ¼ 26 bar, and T=Tc ¼ 0.5. However, the
mode softens as the temperature increases. Above a critical
temperature of T� ≈ 0.57Tc the stiffness supporting the NG
mode vanishes and a conjugate pair of imaginary eigen-
frequencies appear signaling a helical instability of the AC2

phase. Figure 2 shows the evolution from the dispersion
relation from the region of a stable AC2

phase indicated by
positive frequencies. Negative values correspond to the
magnitude of the imaginary frequencies of the unstable NG
mode. The wave vector of the most unstable modeQcðTÞ is

FIG. 2. NG mode dispersion ω− as a function of Q and T and
scaled by the bulk A-phase amplitude at p ¼ 26 bar and
R ¼ 100 nm. Negative values denote imaginary values of ω−.
The circles indicate the most unstable mode Q=Qc for each
temperature. Qc ≈ π=674 nm ¼ 4.66 × 10−3 nm−1 is the maxi-
mum value of the most unstable mode at the SA − Pz transition.
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indicated at each temperature. As we show below the
instability is stabilized to a new chiral phase with sponta-
neously broken translation symmetry along z by nonlinear
terms in the GL free energy.
Double helix phase.—The structure of the broken trans-

lation symmetry of this new phase, designated as SA, is that
of a double helix, easily visualized by the propagating
rotation of the pair disgyrations as shown in Fig. 1. This
phase has continuous helical symmetry under the set of
rotations by −Θ about ẑ, Rz½−Θ� combined with the
translation along z a distance þΘ=Q, Tz½þΘ=Q�. Note
also the helical flow of the counterpropagating super-
currents that are confined near the two disgyrations. The
model for the order parameter in Eq. (9) allows us to study
the temperature evolution of the equilibrium SA phase, with
rotary propagation ϑðzÞ ¼ Qz, shown in Fig. 3. Note that
half-period L ¼ π=Q is a minimum at the SA − Pz tran-
sition, with L ≈ 37ξ0 ≈ 674 nm at p ¼ 26 bar, and
diverges as the SA − AC2

transition is approached. The
structure of the SA phase obtained from the variational
model, as well as the second-order phase transitions
between the AC2

− SA phases and the SA − Pz phase, agree
closely with the numerical minimization of the full GL
functional (see the Supplemental Material [20]).
Phase diagram.—We find six distinct phases for cylin-

drical channels: the translationally invariant Pz, ASOð2Þ,
AC2

, and BSOð2Þ phases reported in Ref. [8]; the double-
helix SA phase; and a periodic domain-wall B phase SB
predicted by Aoyama [22]. The SB phase is defined by
domain walls separating polar-distorted B-like phases
along the z axis. We impose boundary conditions for the
half-period L of the order parameter at z ¼ 0 and z ¼ L,
where L is determined in the minimization of the free-
energy functional.
Figure 4 shows the phase diagram for an R ¼ 100 nm

cylindrical channel with strong pair breaking b0T ¼ 0.1. The
polar Pz phase, with Cooper pairs nematically oriented
along the channel, is the first superfluid phase to nucleate
from the normal state. At a lower temperature the transverse

orbital components appear; the chiral SA phase develops at
second-order instability from the Pz phase. Compared to an
earlier calculation [8] that assumed translational invariance
along the channel, we find that the AC2

phase is replaced by
the more stable SA phase. At the higher pressures, the
isotropic chiral A phase is favored over the helical phase,
separated by a first-order transition line, which then termi-
nates at a tricritical point, below which the helical phase is
unstable to the polar-distortedB phaseBSOð2Þ also separated
by a first-order transition. At still lower pressures the SB
phase is stable in a very small window of the phase diagram.
The ASOð2Þ and SB phases are very sensitive to surface pair
breaking and are completely suppressed for maximal pair
breaking (see the Supplemental Material [20]). Finally, as
the surface boundary condition approaches specular reflec-
tion the AC2

and SA phases are supplanted by the ASOð2Þ
phase. A more detailed presentation of the phase diagram,
including a phase diagram as a function of channel radiusR,
is presented in the Supplemental Material [20].
NMR signatures.—Nuclear magnetic resonance (NMR)

spectroscopy is a tool for identifying inhomogeneous
phases of superfluid 3He [23]. The frequency shift of the
NMR line relative to the Larmor frequency is sensitive to
the spin and orbital correlations of the order parameter
that minimizes the nuclear magnetic dipole energy
ΔΩD ¼ R

V d
3rgDðjTrAj2 þ TrAA�Þ. The dipole energy

lifts the degeneracy of the equilibrium states with respect
to relative spin-orbit rotations. Thus, deviations from the
minimum dipole energy configuration lead dipolar torques
generated by the spin-triplet Cooper pairs that shift the
NMR resonance frequency away from the Larmor fre-
quency. The magnitude of the shift is determined by the

FIG. 3. (left) The amplitudes Δ0
z, (red); Δ00

r , (blue); and Δ00
z ,

(green) for the SA order parameter phase, at p ¼ 26 bar,
R ¼ 100 nm and scaled by the bulk A-phase amplitude
ΔA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijαðTÞj=4β245

p
. The black vertical lines denote the con-

tinuous phase transitions AC2
− SA, SA − Pz, and Pz-normal with

increasing temperature. (right) The temperature dependence of
the half-period L.

FIG. 4. Phase diagram for the cylindrical channel with R ¼
10 nm and strong pair breaking b0T ¼ 0.1. The labels SA and SB
correspond to the helical and B-like stripe phases, respectively.
The ASOð2Þ phase appears at the highest pressures, and the AC2

phase is suppressed by the more stable SA phase. The SB phase
appears in a narrow region at low pressure and low temperature.
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dipole coupling gD ¼ ðχN=2γ2ÞΩ2
A=Δ2

A, which can be
expressed in terms of normal-state spin susceptibility χN
and the bulk A-phase longitudinal resonance frequency ΩA.
We follow the analysis described in Ref. [8] for the trans-
verse NMR frequency shifts of the translationally invariant
phases of 3He confined in nanopores to calculate the
frequency shifts of the SA phase. In particular, the spatially
averaged dipole energy density for the SA phase is
fD¼ gDhΔ2iSAðd̂ · ẑÞ2, with hΔ2iSA¼2hΔ2

zi−hΔ2
ϕi−hΔ2

ri,
where hΔ2

i i ¼
R
V d

3r
P

αjAαij2 and d̂ lies in the plane of the
channel and perpendicular to the static magnetic field axis
Ĥ. This results in a frequency shift of the same formas that of
the Pz and ASOð2Þ phases [8], but with amplitude ∝ hΔ2iSA ,

ωΔω ¼ γ2

χN
gDhΔ2i

�
cos β − sin2θ

�
5 cos β − 1

4

��
; ð12Þ

where β is the pulsedNMR tipping angle and θ is the angle of
the static field relative to the z axis. Figure 5 shows the
frequency shift for β → 0 as a function of temperature for the
SA variational order parameter defined in Eq. (9) and plotted
in Fig. 3 for two field orientations. The second-order
transition at the Pz − SA boundary shows a discontinuity
in the slope of ΔωðTÞ, and an apparent jump occurs at the
SA-AC2

transition. In fact this is a smooth crossover confined
to a narrow temperature range related to the divergence of the
period of the SA phase. The detailed NMR spectrum close to
this transition is more complex because the spatial variations
of the SA phase, set by the half-period L, can exceed the
dipole coherence length ξD ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

gD=K1

p
≈ 10 μmnear to the

SA-AC2
transition. The d̂ vector becomes inhomogeneous,

spatial averaging breaks down, and the NMR line will
broaden as the temperature approaches the SA-AC2

transition
in a narrow window indicated by the gray shading in Fig. 5.
A narrow NMR line is restored in the AC2

phase.
Conclusions and beyond 3He.—We find six distinct

equilibrium phases within highly confined cylindrical

channels, including two phases that break translation
symmetry along the channel. In particular, we predict a
“helical” phase SA, which spontaneously breaks time-
reversal symmetry and translational symmetry, but retains
rotary-translation (helical) symmetry. The double-helix
structure of this phase is predicted to be stable over a
significant region of the p-T phase diagram for long
cylindrical pores of radius approaching the Cooper pair
coherence length ξ0 and to show a distinct NMR signature.
The novel broken symmetry phases of 3He are based on

competing interactions in a strongly correlated Fermi liquid
with unconventional pairing, combined with strong pair
breaking by confining boundaries. This situation can arise
in a broad range of unconventional superconductors,
including chiral superconductors such as Sr2RuO4 and
UPt3, as well as the cuprates. Indeed, theoretical predic-
tions of novel broken translational symmetry phases are
reported for d-wave superconductors subject to strong
confinement [24,25], and it seems likely that there are
more novel broken symmetry phases in multicomponent,
unconventional superconductors awaiting discovery.
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