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Rapid layering of viscous materials in microsystems encompasses a range of hydrodynamic instabilities
that facilitate mixing and emulsification processes of fluids having large differences in viscosity. We
experimentally study the stability of high-viscosity stratifications made of miscible and immiscible fluid
pairs in square microchannels and characterize the propagation dynamics of interfacial waves, including
breaking and viscous ligament entrainment from wave crests at moderate Reynolds numbers. For large
viscosity contrasts, parallel fluid streams adopt widely different velocities and provide a simple model
system to probe the role of inflectional instabilities of stratified microflows in relation with classic inviscid-
stability theory. We reveal novel viscous wave regimes and unravel dispersion relationships in the presence
and absence of interfacial tension. Detailed examination of wave celerity shows the existence of optimal
operation conditions for passively disturbing miscible fluid flows and continuously dispersing low-and
high-viscosity fluids at the small scale.

DOI: 10.1103/PhysRevLett.121.044502

Irregular fluid motion has long been a source of
inspiration and inquiry from the dancing of flames in a
fire to the breaking of waves on shores. In confined
systems, the appearance of sinuous flow paths indicates
the transition to turbulence and the possibility to enhance
mixing at large Reynolds numbers [1]. The amplification
of disturbances from inflection points in velocity profile is a
common hydrodynamic destabilization process [2]. As two
fluids in relative motion typically involve inflection points,
propagating perturbations at fluid interfaces—or waves—
encompass a rich collection of fluid phenomena, including
Rossby [3] and Kelvin-Helmholtz [4] waves in the atmos-
phere, and rogue waves [5] in open water. At the small
scale, capillary waves [6,7] and Plateau-Rayleigh instabil-
ities [8,9] have been widely investigated between immis-
cible fluids. In general, wave phenomena provide useful
mechanisms to disperse fluids. In microchannels, natural
instabilities of viscosity-stratified flows [10] are promising
for the development of novel microfluidic mixing methods
that do not necessitate active forcing to destabilize streams
[11]. Linear and nonlinear stability analyses of viscous
stratifications often involve solving the Orr-Sommerfeld
equation in various wave-number ranges [12–15] and
simple predictions of wave characteristics are not readily
available. Although a few wavy flow patterns associated
with the shear-induced instability of viscosity-differing
fluids in bounded systems have been experimentally
identified, such as pearl-mushroom [16] and bamboowaves
[17] in core-annular flows, and small-amplitude waves [18]
in Couette flows, systematic measurements of neutrally
stable wave characteristics caused by inflectional instabil-
ities and predicted by the classic inviscid-stability theory
[19,20] remain challenging.

Here, we experimentally characterize the behavior of
viscous waves in the basic configuration of two-layer flow
in a square microchannel. We substantiate the dispersion
relationship of inertial viscous waves, which significantly

FIG. 1. (a) Schematics of traveling waves and viscous liga-
ments in a square microchannel. Inset: Velocity profile of primary
flow. (b) Evolution of ε1 =h with φ for stable miscible stratifi-
cations. Inset: measurement of ε1. Solid line: Eq. (1), dashed line:
ε1=h ¼ ð1þ 2=3φ−2=3χ−1=2Þ−1. (c) Characteristic velocities of
viscous stratifications: (i) average stream velocity Vm=V1, (ii) in-
terfacial velocity Vi=V2, dot-dashed line: Eq. (2).

PHYSICAL REVIEW LETTERS 121, 044502 (2018)

0031-9007=18=121(4)=044502(5) 044502-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.044502&domain=pdf&date_stamp=2018-07-27
https://doi.org/10.1103/PhysRevLett.121.044502
https://doi.org/10.1103/PhysRevLett.121.044502
https://doi.org/10.1103/PhysRevLett.121.044502
https://doi.org/10.1103/PhysRevLett.121.044502


differs from that of capillary waves. To generate stratifi-
cations, we employ silicon and glass microchannels with
a hydrodynamic focusing section where a fluid L1 of
viscosity η1 is injected through the central and top channels
at a total volume flow rate Q1 and a more viscous fluid L2
of viscosity η2 is introduced through the bottom channel at
Q2 [Fig. 1(a)]. The microchannel is placed on top of an
inverted microscope equipped with a high-speed camera for
image analysis. Both miscible and immiscible fluid pairs
are used to characterize the influence of fluid properties on
wave dynamics. The more viscous fluid L2 remains fixed
in both cases and is made of silicone oil with a viscosity
η2 ¼ 485 cP and density ρ2 ¼ 0.97 gmL−1. For the mis-
cible fluid pair, L1 consists of a low-molecular weight
silicone oil of viscosity η1 ¼ 0.49 cP and density ρ1 ¼
0.76 gmL−1 and the diffusion coefficient between the two
oils isD ¼ 5.6 × 10−10 m2 s−1. In the case of the immiscible
fluid pair,L1 is made of ethanol with η1 ¼ 1.08 cP and ρ1 ¼
0.78 gmL−1 and the interfacial tension is γ ¼ 1.09 mNm−1.
To characterize unstable regimes, we first analyze stable

flow configurations [Fig. 1(a), inset] to determine reference
interface location and characteristic velocities based on
control parameters. In particular, we examine the relation-
ship between the low-viscosity stream width ε1 and
quantities such as viscosity ratio χ ¼ η1=η2 and flow rate
ratio φ ¼ Q1=Q2. As the interface is slightly curved due to
fluid self-lubrication effects [17], the width ε1 is estimated
from gray-scale profiles and is found in good agreement
with a correlation previously developed for three-layer
flows [10]. While the interface location ε1 can be exper-
imentally determined, a theoretical approach is needed to
estimate average and interfacial velocities. Assuming a flat
interface, we calculate velocity field and flow rate in each
stream as a function of χ and ε1 through Fourier analysis
[21,22]. In the Supplemental Material [23], we rationalize
computations and graphically establish the expression,

ε1=h ¼ ½1þ 0.5ðφχÞ−1=2�−1; ð1Þ
which provides good experimental agreement with χ ∼ 10−3
for ε1 > 0.1h, when interfacial curvature effects can be
neglected [Fig. 1(b)]. The average velocity in each stream
is calculated as V1 ¼ Q1=ðε1hÞ and V2 ¼ Q2=ðε2hÞ, with
ε2 ¼ h − ε1. Therefore, according to Eq. (1), V1=V2 ¼
0.5ðφ=χÞ1=2 ≫ 1 for very low χ and the low-viscosity stream
is much faster than the high-viscosity stream. The average
stream velocity Vm ¼ ðV1 þ V2Þ=2 then scales with V1 and
is relatively independent of ε2 [Fig. 1(c)(i)]. By contrast, the
interfacial velocity Vi corresponds to the inflection point
velocity and depends on flow features of both low- and high-
viscosity fluid streams.We develop an analytical relationship
for Vi by approximating computed square duct confinement
with a parallel plates model [23], which yields

Vi ¼ 6V2=ð3þ ε2=hÞ; ð2Þ

when χ ≪ 1 [Fig. 1(c)(ii)]. In the following, we use V1 and
Vi as characteristic velocities during the study of unstable
layers.
Miscible and immiscible viscosity stratifications develop

into a variety of flow regimes [Fig. 2]. Flow maps based on
injection flow rates Q1 and Q2 provide a basis for directly
comparing the influence of control parameters on flow
patterns in the presence and in the absence of interfacial
tension. For the miscible fluid case, four generic flow
morphologies include (i) a diffusive regime with a vanish-
ing interface for low flow rates, (ii) a stable regime with a
straight interface for moderate flow rates, (iii) an inertial
regime with a wavy interface, and (iv) viscous ligament
entrainment from wave crests at large flow rates [Fig. 2(a)].
Transitions between regimes are delineated with specific
dimensionless groups, such as the interfacial Péclet number,
Pe ¼ Vih=D ≈ 400 between diffusive and stable regimes
and the Reynolds number associated with the fast stream
Re1 ¼ ρV1h=η1 ≈ 96 between the stable and inertial
regimes. The Péclet number is a useful parameter to compare
convective and diffusive transport of species in coflowing
streams having similar viscosities [24,25]. Here, as streams
have very large difference in velocity, we useVi to character-
ize convection associated with the interfacial region. In the
inertial regime, further increase in flow rates eventually leads
to viscous wave breaking with ligament entrainment from

FIG. 2. Flow maps for miscible and immiscible fluids with
corresponding experimental micrographs, flow rates in μl min−1
(a) Miscible fluid pair with (i) diffusive ðQ1; Q2Þ ¼ ð20; 1Þ
(triangle), (ii) stable (100, 5) (square), (iii) transitional (180,
20) (diamond), and (iv) inertial viscous wave (1000, 70) (circle)
regimes with φmax ¼ 500 and φmin ¼ 0.5 (b) Immiscible fluid
pair including (i) droplet (5, 30) (filled triangle), capillary
(ii) smooth (55, 20) (filled square) and (iii) broken viscous wave
(205, 20) (filled diamond), and (iv) inertial viscous wave (505, 20)
(filled circle) regimes with φmax ¼ 200 and φmin ¼ 0.15. See main
text for transition curves.
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the high-viscosity fluid to the low-viscosity stream. In both
cases, the spatial period of undulations remains nearly
constant λ=h ≈ 1.8 and corresponds to a wave number
k ¼ 2π=λ ≈ 14 mm−1 [Fig. 3(a)]. The critical average velo-
city V1 associated with the fast stream follows a
simple scaling, which is deduced using Eq. (1) such
as V1≈0.5Q1ðφχÞ−1=2=h2¼0.5ðQ1Q2Þ1=2χ−1=2=h2 since
ðφχÞ−1=2≫1 for φ < 20. Thus, the critical velocity V1 ∼
ðQ1Q2Þ1=2 corresponds to the geometrical mean of injection
flow rates. Graphical analysis of flow maps in the
Supplemental Material [23] provides further insights for
the choice of characteristic velocities associatedwith specific
transitions.
Regimes associated with the immiscible fluid pair

include four flow archetypes, including (i) droplet forma-
tion at low flow rates, (ii) smooth long wave pattern for
modest flow rates, (iii) ligament emitting waves for
moderate flow rates, and (iv) inertial waves for large flow
rates [Fig. 2(b)]. The droplet regime is specific to immis-
cible fluid pairs convected at relatively low flow rates in
microsystems [9] and here corresponds to the situation
where the low-viscosity stream becomes encapsulated by
L2 to form a segmented flow of small droplets [Fig. 2(b)
(i)]. As droplets are lifted from the walls to the center axis

of the channel due to the high-viscosity continuous phase,
drops adopt a velocity near the average velocity JT ¼
ðQ1 þQ2Þ=h2. Above a critical JT , viscous waves of long
wavelengths (λ ≫ h) are found to travel along the immis-
cible interface as predicted by linear stability analysis for
any small Reynolds number [12]. To characterize this
transition, JT is normalized with the capillary velocity
γ=η2 of the encapsulating phase to form a critical capillary
number CaT ¼ η2JT=γ ≈ 5. For separated flows, the onset
of breaking waves with ligament emission occurs near a
capillary number based on the fast stream, Ca1 ¼ η1V1=γ ≈
0.1 [Fig. 2(b)]. The appearance of entrainment at wave
crests suggests the prevalence of deforming shear stress
exerted by the low-viscosity stream over restoring inter-
facial tension stress. The wavelength of immiscible strati-
fied flows is found to decrease with flow rates and the value
of λ=h ≈ 1.8 is reached above a critical Re1 ≈ 81 indicating
transition to inertial regimes similar to the miscible fluid
case. Each wave crest then emits a thin ligament that is
significantly stretched in the fast low-viscosity stream and
transported outside of the wave structure. Further down-
stream, the progressive depletion of the viscous stream
width ε2 indicates significant transport of high-viscosity
fluid through ligaments.
Important physical aspects of traveling waves include

frequency f, wavelength λ, celerity c, and amplitude A.
The space-time coherence of undulations is typically
captured using a dispersion relationship, which associates
angular frequency σ ¼ 2πf and wave number k ¼ 2π=λ.
Here, data for long wave regimes are found in good
agreement with capillary wave theory [26] according to
k ¼ ½ðρ1 þ ρ2Þ=γ�−1=3σ2=3 for immiscible fluids [Fig. 3(a)].
For larger wave numbers k ¼ 14 mm−1, the inertial regime
is characterized with a wavelength λ that remains indepen-
dent of frequency f for both miscible and immiscible fluid
pairs [Fig. 3(a)]. Incidentally, in confined microsystems the
inertial regime displays smaller λ compared to capillary
waves that are usually considered the lower limit of
interfacial waves in open waters [27].
The wavelength λ provides a useful indicator of flow

regimes and is related to frequency and celerity according
to the basic wave equation c ¼ fλ. Remarkably, we find
direct proportionality between frequency f and interfacial
velocity Vi for over two decades and for all stratified wave
regimes with both miscible and immiscible fluid pairs
according to f ¼ 1.25Vi=h [Fig. 3(b)]. The quantity Vi=h
is useful as it can be calculated from control parameters and
is interpreted as the characteristic interfacial shear rate. As
Vi corresponds to the velocity of the inflection point, this
simple result is in excellent agreement with the inviscid-
stability theorem [19,28] and our experimental findings
suggest a possible extension of the domain of validity to
confined shear flow instabilities of viscous materials.
By contrast to the wave frequency f, the wave celerity c

displays a nonmonotonic behavior with Vi for miscible

FIG. 3. Wave dynamics. (a) Dispersion relationship between
wavenumber k ¼ 2π=λ and angular frequency σ ¼ 2πf for
capillary and inertial regimes, dashed line: k ¼ ½ðρ1 þ ρ2Þ=γ�−1=3
σ2=3; solid line: k ¼ 14 mm−1. (b) Measured wave emission
frequency f as a function of interfacial shear rate Vi=h for all
waves. Solid line: f ¼ 1.25Vi=h. Inset: example of spatiotem-
poral diagram used to measure f. (c) Normalized wave celerity as
a function of Restrata for miscible and immiscible fluid pairs with
corresponding micrographs. The color scale represents the wave
height A=h. Dashed line: c=Vi ¼ 3Re1=3strata.
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flows and the ratio c=Vi decreases in proportion to λ for
immiscible flows since according to c ¼ fλ with f ∼ Vi,
one would expect c=Vi ∼Oð101Þ for long waves and
c=Vi ∼Oð100Þ for inertial waves. To better understand
variations of celerity c in inertial regimes and the influence
of wave amplitude A, we examine the relationship between
c=Vi and a stratification Reynolds number Restrata ¼
ρ1V2

1ε1=ðη2V2Þ based on the ratio of the inertial force
associated with the fast stream ðρ1V2

1Þðε1hÞ and the shear
force in the slow stream ðη2V2=ε2Þðε2hÞ [Fig. 3(c)]. While
Re1 is useful for predicting transition to inertial regimes,
the stratification Reynolds number Restrata is helpful for
comparing wave dynamics within inertial regimes and is
similar to a theoretical argument on the growth rate of
interfacial waves in Couette flow configuration [29]. Here,
as the celerity c is independently measured from high-
speed imaging and normalized with a velocity Vi, which is
numerically calculated from control parametersQ1 andQ2,
data reveal the fine influence of the wave amplitude A on
flow behavior in the inertial regime. The wave height A is
measured between crests and troughs and coded using a
color scale to show correlations with c in Fig. 3(c). For the
miscible fluid pair, small wave amplitudes, A < 0.2h, are
observed for Restrata < 1 and c=Vi ≈ 2.7. Both maximal
amplitude A ≈ 0.4h and celerity c ≈ 4.5Vi are reached for
Restrata ¼ 5, following a scaling c=Vi ≈ 3Re1=3strata since a
greater inertial force is exerted on wave crests for larger A
and waves adopt higher c=Vi. A further increase of Restrata
leads to a decrease of both A=h and c=Vi due to the apparent
flattening effect of the strong inertial force associated with
the low-viscosity stream. The presence of a maximum c=Vi
suggests an optimum Restrata for mixing applications where
viscous stratified flows made of miscible fluids can be most
effectively disturbed over short distances. By contrast, the
relative celerity of interfacial waves between immiscible
fluids experiences a monotonic decline with Restrata and
reaches a plateau c ≈ 1.8Vi in the inertial regime with no
significant correlations between A and c. Beside these fine
variations, the scaling c ∼ Vi is in good the agreement with
classic inviscid-stability theorem [19].
We now turn our attention to the dynamics of viscous

ligaments entrained from interfacial ridges in various flow
regimes. Slender structures protrude from viscous waves as
a result of a large discrepancy between the wave celerity
c ∼ Vi and the low-viscosity fluid stream velocity V1 ≫ Vi.
During propagation, viscous wave crests experience a
straining force due to the fast side stream, which triggers
breaking and ligament withdrawal. Entrainment of threads
and tendrils involves complex mechanisms that have been
studied in several different contexts [30–35]. In this work,
we examine three typical entrainment dynamics of micro-
fluidic waves including (i) capillary ligament yarning and
inertial entrainment of (ii) miscible and (iii) immiscible
fluid threads as presented in Fig. 4. In the inertial regimes,
the front velocity of ligaments normalized by the wave

celerity u=c widely grows in the reference frame of the
wave crest for both miscible and immiscible stratifications.
In particular, ligaments are found to gain significant speed
when they reach the next downstream crest as they are
sworn into the bulk of the fast stream outside of the wave
structure. By contrast, for midrange waves in the viscous
capillary regime, the relative velocity of ligaments remains
on the order of unity in the experimental field of view and
ligaments display intriguing trundling behaviors that con-
sist of a rolling mode due to the clockwise torque generated
by local velocity profile in a wave trough. The small
relative speed of ligament allows accumulation of viscous
fluid at the tip, which rotates and form a structure suggesting
a ball of yarn. Such phenomenon is unique to capillary
viscous waves since tip rotation requires a long and flat
trough, i.e., a large λ. For inertial viscous waves, when
u=c ∼Oð101Þ, multiple ligament entrainments are observed
for both immiscible and miscible fluid pairs. As immiscible
ligaments form well-defined rounded tips, they experience a
larger drag compared to their slender miscible counterparts
and, as a result, display larger velocities for similar flow rates.
Complex flow structures including recirculating vortex are
also observed with miscible fluids [Fig. 4].
In this letter, we report a set of complex yet periodic

flow regimes arising from simple miscible and immiscible
viscous stratifications in confined microsystems, including
a long wave capillary regime and a short wave inertial
regime. We find good agreement with theory for the
dispersion relationship of capillary waves and we delineate
the dispersion relationship of waves in the inertial regime

FIG. 4. Dynamics of ligament entrainment with evolution of
front velocities in the reference frame of wave crests, flow rates in
μl min−1: (i) immiscible ligament yarning with u=c ∼Oð100Þ for
ðQ1; Q2Þ ¼ ð20; 305Þ and inertial regimes with u=c ∼Oð101Þ for
(ii) miscible fluid (20, 800) and (iii) immiscible fluid pairs
(15, 600). Selected images correspond to solid data points on the
velocity graph.
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for both miscible and immiscible fluid pairs. In the inertial
regime, the wavenumber remains constant regardless of
frequency or interfacial tension, which allows us to clearly
distinguish flow transitions. In addition, evidence of direct
proportionality between experimental wave frequency and
computed interfacial shear rate of primary flow confirms the
role of inflectional regions during pressurized shear-flow
instabilities for all stratified regimes. The interfacial velocity
provides an intrinsic reference to examine the evolution of
wave celerity as a function of the stratification Reynolds
number. For the case ofmiscible stratifications, we show that
the maximal relative celerity is reached for large wave
amplitude suggesting the existence of optimal micromixing
conditions through ligament entrainment. Overall, we shed
light on numerous novel destabilizing processes and char-
acterize flow transitions using dimensionless groups based
upon confined high-viscosity fluid strata. Viscous ligaments
emitted from wave crests can be employed to continuously
blend small amounts of high-viscosity fluids with miscible
solvents or disperse fine droplets into a low-viscosity
continuous phase. Our study provides important practical
elements to better manipulate a range of environmental,
biological, and engineered multifluid flows with vast vis-
cosity contrasts at the small scale. While capillary waves are
usually seen as the smallest interfacial waves, our work
shows the transition to smaller inertial waves in confined
microsystems. Further fundamental work on the relationship
between maximal wave number and confinement would
improve our current understanding of intriguing viscous
wave dynamics in confined microsystems.
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