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Several dynamical properties of electromagnetic waves such as energy, momentum, angular momentum,
and optical helicity have been recently reexamined in dispersive and lossless media. Here, we address an
alternative derivation for the optical chirality, extending it so as to include dissipative effects as well. To this
end, we first elaborate on the most complete form of the conservation law for the optical chirality, without
any restrictions on the nature of the medium. As a result we find a general expression for the optical
chirality density both in lossless and lossy dispersive media. Our definition is perfectly consistent with that
originally introduced for electromagnetic fields in free space, and is applicable to any material system,
including dielectrics, plasmonic nanostructures, and left-handed metamaterials.
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Introduction.—Local dynamical properties such as
energy, linear momentum, and angular momentum, are
conserved quantities for electric and magnetic fields in
vacuum [1,2]. In fact, leaving aside the physical meaning,
there exists an infinite class of conserved quantities for free-
space electromagnetic (EM) fields [3,4]. In particular, in
1964 Lipkin demonstrated the existence of a set containing
ten new independent conservation laws for EM radiation
in vacuum [5]. Originally, these tensorial quantities were
merely conceived as mathematical entities theretofore
unknown, and having no ready physical significance.
That is why they were collectively referred to as the
ij-zilches (which literally means “nothingness”), where i
and j stand for the labels indicating the tensor indices.
Since then, there have been many efforts in searching for a
physically meaningful picture for these quantities [6–8].
Recent advances in near-field optics attempting to

achieve full spatiotemporal control of light-matter inter-
actions [9] has led to a renewed interest in Lipkin’s zilches
as a measure of the handedness, or knottedness, of the
streamlines describing highly contorted optical fields [10].
In this regard, and motivated by the possibility for
enhancing the chiroptical effects (such as circular dichro-
ism (CD) [11]), which leads to enantioselective signals far
larger than that due to circularly polarized light (CPL),
Tang and Cohen introduced the 00-zilch as a measure of the
local density of optical chirality [12]:

Cvacuum ≡ ½ε0E · ð∇ × EÞ þ μ0H · ð∇ ×HÞ�=2; ð1Þ

where ε0 and μ0 are the permittivity and permeability of
vacuum, respectively, and Eðr; tÞ and Hðr; tÞ are the local,
time-dependent electric and magnetic fields. Shortly after,
this definition for the optical chirality was successfully
used in enhanced CD spectroscopic measurements for
the experimental detection and characterization of chiral

biomolecules [13], thus confirming its physical signifi-
cance, and highlighting the feasibility for practical appli-
cations. The extremely high sensitivity in the chiroptical
responses (enhancement factors up to 6 orders of magni-
tude were reported) was attributed to superchiral fields
[14]. However, on account of the energy conservation, there
should be an upper bound lowering those enhancements
[15,16]. It was argued that this fundamental restriction
ought to limit the enhancement factor up to 2 orders of
magnitude [15]; the other 4 orders should come from the
highly twisted evanescent near-field modes [16,17]. It then
follows that, essentially, the main requirement for the
occurrence of strengthened chiroptical influence in light-
matter interaction relies on the complexity in the structure
of the EM field distribution [10,17,18]. For this reason,
metallic nanostructures represent ideal candidates for
investigating chirality-based applications and functional-
ities in nanophotonics [19–26]. It is certainly surprising,
however, that, most of the previous studies on this issue
build on the earliest definition for the optical chirality
density [5], which is only valid for monochromatic optical
fields in free space [12,14,16,27]. Still, there are few works
attempting to extend such definition to linear [15], gyro-
tropic [28], or lossless dispersive media [29].
Inspired by the latest theoretical results concerning the

dispersive features of the EM energy momentum, the
optical orbital and spin angular momentum [30–32], and
the EM helicity [33], in this Letter we report on the optical
chirality in lossless and lossy dispersive media. Special
emphasis is placed on the role of the mathematical structure
of the corresponding conservation law. Indeed, building on
previous approaches addressing the EM energy density
considering dispersion as well as dissipation [34], we put
forward a complete description for the optical chirality
conservation law valid for arbitrarily structured optical
fields. The only restriction we need to impose relies on the
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EM characterization of the medium, which must be fitted
by Lorentzian line shapes. Hence, our results are com-
pletely general [64], and are applicable to any material
system, including dielectrics, semiconductors, metals, as
well as metamaterials. Further, our findings are perfectly
consistent with the ones so far established for optical fields
in free space [12,16].
Conservation law for the optical chirality.—Conservation

laws and symmetry properties of a physical system are,
arguably, among the most important cornerstones of
modern physics [65]. Indeed, appealing to the principle
of least action, Noether’s theorem states that, in the absence
of sources, conserved quantities and symmetries can be
regarded as equivalent features [66]. These theoretical
concepts are mathematically described via continuous or
discrete symmetry groups, which are in turn related to the
corresponding physical transformations [67]. Typical
examples of continuous symmetries lead to the conserva-
tion of energy, linear momentum and, angular momentum,
which are associated with the invariance under the univer-
sal space-time transformations [68]. An insightful picture
of the conserved quantities, reminiscent of the quantum
formalism [69], allows one to deal with the conserved
quantities as differential operators representing the gener-
ators of the corresponding infinitesimal symmetry trans-
formations. For the above dynamical properties, the
generators simply involve first derivatives with respect
to the space-time coordinates acting on the EM fields, and
are given explicitly by fi∂t; i∇g, for the space-time trans-
lations [30], and iðr ×∇Þ, for the spatial rotations [31].
Furthermore, it was recently demonstrated that the con-
servation of the optical chirality is underpinned by ið∂t∇×Þ
[29], which must be applied on the vector potentials.
Importantly, these generators can be used to find the
eigenstates of the aforementioned conserved quantities.
In this regard, just as the plane waves are the eigenstates of
the energy-momentum differential operator, the corre-
sponding eigenstates associated to the optical chirality
are the circularly polarized plane waves [29].
The above scheme for identifying continuous conserved

quantities only holds in the absence of sources. In the
presence of charges and/or currents, conservation laws are
to be expressed through the continuity equations [70,71].
Within the EM field theory, the most well-known example
is perhaps Poynting’s theorem [72], accounting for the
energy conservation [1,2]:

∇ · S ¼ −½E · ∂tDþH · ∂tBþJ · E�; ð2Þ

where S ≡ E ×H is the Poynting vector, which represents
the energy flux density, and D, B, and J are the time-
dependent electric displacement, magnetic induction, and
electric current density, respectively. This expression is
generally valid, and can be readily obtained by taking the
divergence of the energy flux density. Likewise, we can

derive the time-dependent conservation law for the optical
chirality from the corresponding chirality flux density
[5,12,16]:

F ≡ ½E × ð∇ ×HÞ −H × ð∇ × EÞ�=2: ð3Þ

With the aid of the structural Maxwell’s equations and the
vector identity, ∇ · ðA×BÞ¼B · ð∇×AÞ−A · ð∇×BÞ, it
follows that

∇ ·F ¼−½E · ∂tð∇×DÞþH · ∂tð∇×BÞþSJ �=2; ð4Þ

where SJ ¼ E · ð∇ ×J Þ is the current-related sourcelike
contribution. Taking into account the general structure of
the continuity equation [34], Eq. (4) can be recast as

∇ ·F þ ∂tC ¼ S; ð5Þ

where

C≡ ½E · ð∇ ×DÞ þH · ð∇ ×BÞ�=2; ð6Þ

S≡ ½∂tE · ð∇×DÞþ ∂tH · ð∇×BÞ−SJ �=2; ð7Þ

are the optical chirality density and the sourcelike terms,
respectively. The above expressions represent the most
general result for the conservation law of optical chirality,
without any restrictions on the nature of the medium.
However, they differ significantly from the previously
established continuity equation [5,12,16,26],

∇ ·F þ ∂tCvacuum ¼ Svacuum; ð8Þ

where Cvacuum is the optical chirality density as defined in
Eq. (1), and Svacuum ≡ −½J · ð∇ × EÞ þ E · ð∇ ×J Þ�=2 is
the sourcelike term in free space. The essential discrepancy
arises on account of the dispersion-related terms [34]. In
particular, it is easy to prove that C ¼ Cvacuum þ Cmedium,
where Cmedium ≡ ½E · ð∇ ×PÞ þ μ0H · ð∇ ×MÞ�=2, and
P and M are the macroscopic polarization and magneti-
zation fields. Strikingly, up to our knowledge, these
considerations have never been properly analyzed in
previous approaches [12,15,16,29,73]. In fact, even though
both the dispersion-related and the dissipation terms are
explicitly disregarded in Eq. (8), it has been widely used for
investigating chiroptical effects in media where the per-
mittivity is highly dispersive, including plasmonic nano-
structures as well as metamaterials [19–26]. Thus, as shown
below, the dispersion of the material systems brings about
important corrections into the original expressions for the
optical chirality density [compare Eqs. (1) and (6)] and the
sourcelike terms of the continuity equation [compareEqs. (5)
and (8)], and hence, it must be generally considered.

PHYSICAL REVIEW LETTERS 121, 043901 (2018)

043901-2



Optical chirality in lossless dispersive media: Brillouin’s
approach.—For monochromatic electric and magnetic
fields in free space, Eðr; tÞ ¼ Re½EðrÞe−iωt� andHðr; tÞ ¼
Re½HðrÞe−iωt�, the time-averaged optical chirality density
is given by [12,16]

Cvacuum ¼ ω

2c2
Im½E ·H��; ð9Þ

where bold letters stand for complex field amplitudes and
the asterisk denotes complex conjugation. A straightfor-
ward calculation allows us to show that, for freely propa-
gating EM plane waves, the maximum value of C is
achieved for CPL:

Cð�ÞCPL
vacuum ¼ � ω

2c2
1

Z0

jEj2; ð10Þ

where Z0 ≡
ffiffiffiffiffiffiffiffiffiffiffi

μ0=ε0
p

is the vacuum impedance, and the
signs þ and − correspond to left- and right-handed CPL.
In general, CPL is considered as the paradigmatic

example of field displaying optical chirality, and has
been widely used for chiroptical measurements [13,14].
Unfortunately, mainly due to the mismatch between the
scales of the wavelength and the typical size of chiral
objects [10], chiral responses are inherently very weak
[11,74]. To overcome this drawback, several efforts have
been undertaken for improving the detection schemes
[14,18,75,76], with special emphasis on metallic nano-
structures, which are regarded as well suited platforms for
strengthening chiroptical light-matter interactions [19–26].
Metals are inherently absorptive and highly dispersive.

Something similar happens with semiconductors at ener-
gies around the band gap. These features are characterized
in terms of the electric permittivity ε (and eventually with
the magnetic permeability μ) depending on the frequency
ω. According to the Kramers-Kronig relations [1,77],
dispersion is necessarily tied to dissipation. Thus, in order
to avoid misleading outcomes, the analysis of the local
dynamical properties have to be carefully carried out from a
material standpoint as well. This is well known for the
EM field energy in metals, for which a general treatment
has been developed [1,2]. Indeed, in a lossless dispersive
medium the energy density is described by the Brillouin’s
formula [78,79]. Following a similar procedure we may
obtain a closed expression for the optical chirality density.
For simplicity, we will assume a linear, homogeneous, and
isotropic medium such thatD¼ε0εðωÞE andB¼μ0μðωÞH.
From the continuity equation as given in Eq. (4), and using
the Fourier transforms, the instantaneous distribution of the
optical chirality density can be obtained by integrating
E · ∂tð∇ ×DÞ and H · ∂tð∇ × BÞ over time. Notice that
the integral convergence is constrained by the slowly
varying amplitude approximation [2]. Within this
assumption, the electric contribution reads as

Celec ¼ i
2c2

ZZ

�

ω2εωμω
ω0 þ ω

�

Eω0 ·Hωe−iðω
0þωÞtdω0dω: ð11Þ

By proceeding in the same way for the magnetic contri-
bution, summing up both expressions, and integrating them
properly over the frequencies ω and ω0 [34], we can get
the time-averaged optical chirality density in a lossless
dispersive media:

Clossless ¼ Re½nðωÞñðωÞ�Cvacuum ¼ ω

2

Im½E ·H��
vpðωÞvgðωÞ

; ð12Þ

where vpðωÞ≡ c=Re½nðωÞ� and vgðωÞ≡ c=Re½ñðωÞ�, are
the phase and group velocities [80,81], respectively, which
are in turn expressed in terms of the phase refractive index
nðωÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εðωÞμðωÞp

and the corresponding dispersion-
modified group index ñðωÞ≡ nðωÞ þ ω½∂nðωÞ=∂ω�. A
detailed description of the above derivation as well as
the current-related contribution can be found in Sec. III B of
the Supplemental Material [34].
It should be noted that the same expression for the

optical chirality density was previously obtained, but using
a more complicated approach (see Eq. (33) in Ref. [29]).
Importantly, this definition [Eq. (12)] reduces to the
standard result [Eq. (9)] for freely propagating optical
fields, i.e., when n ¼ 1. Furthermore, it is important to
emphasize the dependence of Eq. (12) on the dispersion-
related phase and group velocities. From this simple
relation, it is easy to realize that we may enhance the
optical chirality in artificially engineered materials directly
by lowering both velocities [80,81]. This is specifically
accomplished in the vicinity of the resonance frequency,
i.e., in the anomalous dispersion region [see upper panel of
Fig. 1]. However, in a dispersive and lossy media, there are
certain frequency ranges where the precise physical mean-
ing of the group velocity turns out to be somewhat unclear
[78,79], and Eq. (12) may not be valid.
Optical chirality in lossy dispersive media: Loudon’s

approach.—A more physically realistic description of
dispersive media requires careful considerations of dis-
sipative effects. In this regard, as previously reported
(see, e.g., Refs. [82,83]), the expression of the energy
density in dispersive and lossy media crucially depends on
the specific model characterizing the medium. In classical
theory, ε can be modeled as a collection of Lorentz
oscillators [2,84]:

εDrude-LorentzðωÞ ¼ 1 −
X

n

fnω2
p

ω2 − ω2
n þ iωγn

; ð13Þ

where fn, ωp, ωn, ω, and γn are, respectively, the relative
strength of the oscillators, the plasma frequency, the nth
resonance frequency, the excitation frequency, and the nth
damping constant. This multiresonant model has been
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proved to fit very well with experiments [64,85,86], and
thus, it can generally characterize the electric response of
any material system for any frequency and bandwidth. A
similar expression can also be introduced for the magnetic
permeability μ, e.g., when describing negative-index meta-
materials [87–89]. It should be noted that the latter
expression for ε follows from the dynamic equation of
the polarization field:

∂2Pn

∂t2 þ γn
∂Pn

∂t þ ω2
nPn ¼ ε0fnω2

pEloc; ð14Þ

with Eloc being the time-varying external electric field. This
relation between the electric and the polarization field is
actually the key point to get the general form of the energy
density [82,83]. Likewise, taking into account the under-
lying mathematical structure of the continuity equation
[34], we can use Eq. (14) (and the corresponding one for
the magnetization field) to identify the electric (and the
magnetic) contribution of the optical chirality density in
dispersive and lossy media. To this aim, we start again from
the continuity equation as given in Eq. (4). Attempting to
find the total time derivative for the electric contribution,
we have to express E · ∂tð∇ ×DÞ in terms of the electric
and the polarization fields (and similarly for the magnetic
contribution [34]):

E · ∂tð∇×DÞ ¼ ½ε0E · ∂tð∇×EÞþE · ∂tð∇×PÞ�: ð15Þ

In this way, we can also account for the influence of the
medium on the chirality density. In the latter expression, the
first term of the right-hand side can be rewritten as

E · ∂tð∇ × EÞ ¼ ∂t½E · ð∇ × EÞ� − ∂tE · ð∇ × EÞ; ð16Þ

thereby leading to a total time derivative plus a residual
term. This residual term exactly cancels with the one
appearing for the magnetic contribution in vacuum [34],
thus allowing us to recover the usual expression for the
optical chirality in free space [Eq. (1)]. On the other hand,
the second term in the right-hand side of Eq. (15) can be
addressed by using the dynamic equation for the polariza-
tion field given in Eq. (14) (see Sec. III A in the
Supplemental Material [34] for further details). Following
the same procedure for the magnetic contribution and
summing up both expressions, we finally find that the
time-averaged optical chirality density in a lossy dispersive
medium is

Clossy ¼
ω

4c2
Im½(εðωÞμeffðωÞþ εeffðωÞμ�ðωÞ)E ·H��; ð17Þ

where εeff and μeff are the real-valued effective material
parameters, which are defined as

εeffðωÞ≡ 1þ
X

n

ðχ0n þ 2ωχ00n=γnÞ; ð18aÞ

μeffðωÞ≡ 1þ
X

n

ðξ0n þ 2ωξ00n=γ̃nÞ; ð18bÞ

with χ ¼ χ0 þ iχ00 ≡ ε − 1 and ξ ¼ ξ0 þ iξ00 ≡ μ − 1 being
the electric and magnetic susceptibilities. Furthermore, as
pointed out in the SupplementalMaterial [34], there is also a
current-related contribution which should be included.
As shown in Fig. 1, both of the above approaches yield

different results. Indeed, whereas Clossless [Eq. (12)] can
display both positive and negative values, the total con-
tribution of Clossy [Eq. (17)] remains always positive, with a
minimum value of Cvacuum that is reached in the high-
frequency limit. The largest discrepancies occur close to the
resonance frequency. Still, the peaks for both approaches
are almost equal in absolute value. These signatures can
also be appreciated in Fig. 2, where we plot the optical
chirality density of silver and silicon. Both materials have
been modeled using Eq. (13) with parameters taken from
Refs. [85,86]. From the results in Fig. 2 we note thatClossless
overlaps almost exactly with Clossy for all frequencies,
except in the vicinity of the region of anomalous dispersion,
i.e., where dε0=dω < 0. There, the curves drastically
separate from each other, thereby highlighting the impor-
tance of considering dissipative effects.
Equation (17) is the main result of this work. To the best

of our knowledge, it provides the most general definition
for the optical chirality density in dispersive and lossy

(a)

(b)

FIG. 1. Optical chirality density in (a) lossless and (b) lossy
dispersive media. Material parameters correspond to a non-
magnetic medium (μ ¼ 1), with ε being described by a single
Lorentz pole with ωp ¼ ω0. Red, gray, and blue dashed lines
indicate the curves where the optical chirality in the lossless case
is −Cvacuum, 0, and Cvacuum, respectively.
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media, being applicable to any material system, including
plasmonic nanostructures [26] and left-handed metamate-
rials [89]. Yet, our definition differs significantly from the
standard formula for optical fields in free space [12,16], and
even from previous suggestions attempting to tackle optical
chirality in dispersive media [29,73]. The distinction
between our result and those found in previous approaches
essentially arises from considering properly the dynamic
response of the time-dependent EM fields within a dis-
persive medium [34]. In this regard, it should be noted that
the time derivative of the fieldsD andB, must be expressed
as convolution integrals in the time domain. Furthermore,
in this particular case, regarding lossy dispersive media, the
mathematical structure of the continuity equation plays a
central role in the identification of the optical chirality
density as a conserved dynamical property.
Summary.—We have carried out a theoretical analysis

of the conservation law for the optical chirality. Taking
advantage of previous approaches addressing the EM
energy density, we have undertaken a parallel derivation
for the optical chirality both in lossless and lossy dispersive

media. Remarkably, our description is completely general,
i.e., is valid for arbitrarily varying radiation fields, and can
be applied to any medium, including dielectrics, semi-
conductors, as well as highly lossy material systems such as
metals and metamaterials. In view of the growing interest in
chirality and chiral light-matter interaction, we expect that
these results will aid the development of plasmonic and
metamaterial nanostructures for advanced chiroptical appli-
cations [17,89], especially in the context of enhanced
enantioselectivity, and detection and characterization of
chiral biomolecules via tailored chiral and nonchiral
structures [90,91].
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