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Relativistic quantum dynamics of twisted (vortex) Dirac particles in arbitrary electric and magnetic fields
are constructed for the first time. This allows us to change the controversial contemporary situation when
the nonrelativistic approximation is used for relativistic twisted electrons. The relativistic Hamiltonian and
equations of motion in the Foldy-Wouthuysen representation are derived. A critical experiment for a
verification of the results obtained is proposed. The new important effect of a radiative orbital polarization
of a twisted electron beam in a magnetic field resulting in a nonzero average projection of the intrinsic
orbital angular momentum on the field direction is predicted.
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The discovery of twisted (vortex) electron beams carrying
an intrinsic orbital angular momentum (OAM) [1], whose
existence has been predicted in Ref. [2], opens new pos-
sibilities in electron microscopy and in investigations of
magnetic phenomena (see Refs. [3–10] and references
therein). Twisted electron beams with large intrinsic
OAMs (up to 1000ℏ) have been recently obtained [11].
At present, much attention is also devoted to the interactions
of such beams with atoms, nuclei, and a laser field [12]. The
dynamics of the intrinsic OAM in external magnetic and
electric fields has been studied in Refs. [2,13–18]. However,
we note in advance that our result is different from the
equation of motion of the intrinsic OAM in an electric field
previously found in Ref. [2]. The general description of the
relativistic dynamics of an intrinsicOAMinarbitrary electric
andmagnetic fields in the framework of classical physics has
been made in Ref. [19]. In particular, the correction of the
equation of motion of the intrinsic OAM in the electric field
previouslyobtained inRef. [3] hasbeen fulfilled in thiswork.
The methods of the manipulation of beams developed in
Ref. [19] use not only the magnetic field but also the electric
one. The great importance of twisted electrons requires
detailed investigations of fundamental quantum-mechanical
properties of twisted electron beams. Such investigations
have been carried out in many publications (see Refs. [3,4]
and references therein). However, only the nonrelativistic
approximation has been formerly used. The correct quantum
dynamics of a twisted electron in an electric field has not
been elaborated at all. Therefore, some fundamental proper-
ties need a further inquiry. The present Letter, using a
quantum-mechanical approach, differs fromour recent study
[19], where the classical approach had been applied.

In the present Letter, the system of units ℏ ¼ 1, c ¼ 1
is used. We include ℏ and c explicitly when this inclu-
sion clarifies the problem. The curly brackets, f…;…g,
denote anticommutators.
Since vortex electrons are relativistic quantum objects

admitting also a semiclassical description, a construction of
a relativistic Schrödinger-like dynamics of such particles is
necessary. It is important that one mainly observes a motion
of charged centroids, and it is instructive to mirror this
circumstance in an appropriate quantum description. We
solve this problem in the present Letter. We should also
notice the previous quantum-mechanical analysis mirrored
in the reviews [3,4].
A twisted electron is a single pointlike particle. However,

its wave function is a superposition of states with different
momentum directions. While the twisted electron in a
vacuum has a nonzero intrinsic OAM and a nonzero
component of the momentum in the plane orthogonal to
the direction of its resulting motion, it can be described by
the Dirac equation for a free particle. Quantum mechanics
(QM) of the twisted electron in external electromagnetic
fields are also governed by the usual Dirac equation. We can
disregard the anomalous magnetic moment of the electron
because its g factor is close to 2. The Schrödinger form of
the relativistic QM is provided by the relativistic Foldy-
Wouthuysen (FW) transformation. The relativistic exten-
sions of the FW method [20] were first proposed in
Refs. [21,22]. There are many other methods of the
relativistic FW transformation as well (see Refs. [23–30]
and references therein). The results obtained by different
methods agree because of the uniqueness of the FW
representation proven in Ref. [31]. In all previous studies
of twisted particles in external fields, only the nonrelativistic
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FW transformation has been fulfilled (see the reviews [3,4]).
The relativistic FW transformation has been formerly used
only for free twisted particles [32,33]. Thus, the nonrela-
tivistic approximation has been used for a description of
relativistic objects (the kinetic energy of twisted electrons,
200–300 keV, is comparable with their rest energy,
511 keV). As a result, the present state of the theory of
twisted electron beams is controversial.
The exact relativistic Hamiltonian in the FW represen-

tation (the FW Hamiltonian) for a Dirac particle in a
magnetic field was first obtained in Ref. [21], and its
validity has been confirmed in other works [25,34,35]. It is
given by

HFW ¼ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ π2 − eΣ · B
p

; ð1Þ

where π ¼ p − eA is the kinetic momentum, B ¼ ∇ × A is
the magnetic induction, and β and Σ are the Dirac matrices.
This Hamiltonian is valid for a twisted and a untwisted
particle. The spin angular momentum operator is equal to
s ¼ ℏΣ=2. The magnetic field is, in general, nonuniform
but time independent. Unlike all previous investigations,
our quantum description of a twisted Dirac particle is fully
relativistic and correctly defines both electric and magnetic
interactions. Our preceding study [19] has shown the
importance of the electric field for the manipulation of
twisted electron beams.
The FW Hamiltonian acts on the bispinor wave function

ΨFW ¼ ð ϕ
0
Þ. Since both the nonrelativistic and the relativ-

istic FW Hamiltonians commute with the operators π2 and
sz, their eigenfunctions coincide. In the uniform magnetic
field B ¼ Bez, they have the form of nondiffracting
Laguerre-Gauss beams [13,36,37]. It is convenient to
present the exact energy spectrum obtained by different
methods [21,34,35,38–41] as follows:

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ ð2nþ 1þ jlzj þ lz þ 2szÞjejB
q

; ð2Þ

where n ¼ 0; 1; 2;… is the radial quantum number and
l ¼ r × p ¼ Lþ LðeÞ is the total OAM operator being the
sum of the intrinsic (L) and extrinsic (LðeÞ) OAMs. The same
energy spectrum but for the squared energy operator has
been obtained in Refs. [15,16]. We consider the conventional
canonical OAMs. The difference between the dynamics of
the canonical and kinetic (mechanical) OAMs has been
investigated in Ref. [42]. All energy levels of twisted
particles in the uniform magnetic field belong to the
Landau levels. The relativistic approach (unlike the non-
relativistic one) demonstrates that the Landau levels are not
equidistant for any field strength. This property has not been
mentioned in Refs. [15,16,21,34,35,38–41], while it has
been noted in Ref. [39] that the energy spectrum becomes
quasicontinuous when the quantum number n becomes very

large. A nonzero intrinsic OAM increases a degeneracy
multiplicity of the Landau levels (cf. Refs. [3,13]).
As a rule, we can use the weak-field approximation and

suppose that the de Broglie wavelength, ℏ=p, is much
smaller than the characteristic size of the nonuniformity
region of the external field. In this case, the Hamiltonian (1)
takes the form

HFW ¼ β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ π2
p

−
e
4

�

1

ϵ0
;Π · B

�

¼ βϵ0 − β
e
4

�

1

ϵ0
ðl þ ΣÞ · Bþ B · ðl þ ΣÞ 1

ϵ0

�

;

ϵ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2
q

; ð3Þ

where ½ϵ0; l� ¼ 0. Equation (3) agrees with the result
obtained in Ref. [37]. The small term mω2

Lr
2=2 presented

in Eq. (2) of Ref. [37] expresses the rotational energy of the
centroid in the magnetic field. This term originates from
e2A2=ð2mÞ and is omitted in the present Letter because it is
proportional to B2.
It is necessary to take into account that a twisted electron

is a charged centroid [2,3]. To describe observable quantum-
mechanical effects, we need to present the Hamiltonian
in terms of the centroid parameters. The centroid as a
whole is characterized by the center-of-charge radius vector
R and by the kinetic momentum π0 ¼ P − eAðRÞ, where
P ¼ −iℏ∂=ð∂RÞ. The intrinsic motion is defined by
the kinetic momentum π00 ¼ p − e½AðrÞ − AðRÞ�. Here
p ¼ −iℏ∂=ð∂rÞ, r ¼ r − R, π0 þ π00 ¼ π, Pþ p ¼ p.
Since

AðrÞ ¼ AðRÞ þ 1

2
BðRÞ × r;

the operator π2 takes the form

π2 ¼ π02þp2−
e
2
½L ·BðRÞþBðRÞ ·L� þπ0 ·π00 þπ00 ·π0:

After summing over partial waves with different momentum
directions, hπ0 · π00 þ π00 · π0i ¼ 0. More precisely, the oper-
ator π0 · π00 þ π00 · π0 has zero expectation values for any
eigenstates of the operator π2 and, therefore, it can be
omitted. It can be added that this summing can be performed
for the squared Hamiltonian H2

FW.
The FW Hamiltonian summed over the partial waves [3]

takes the form

HFW ¼ βϵ − β
e
4

�

1

ϵ
Λ · BðRÞ þ BðRÞ · Λ 1

ϵ

�

;

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ π02 þ p2

q

; Λ ¼ Lþ Σ: ð4Þ

The momentum and the intrinsic OAM can have different
mutual orientations in different Lorentz frames [19,43].
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Such a geometry of twisted waves has been described
in Ref. [44].
The acceleration of the twisted electron in a uniform

magnetic field does not depend on Λ. However, such a
dependence takes place in a nonuniform magnetic field due
to the Stern-Gerlach-like force defined by the operator

FSGl ¼ β
e
4

�

1

ϵ
∇½Λ · BðRÞ� þ∇½BðRÞ · Λ� 1

ϵ

�

; ð5Þ

where ∇≡ ∂=ð∂RÞ. This force is an analog of the Stern-
Gerlach one affecting the spin but it is much (approx-
imately, 2L times) stronger. The operators of the magnetic
and electric dipole moments, μ and d, are defined by

HðintÞ
FW ¼ −

1

2
½μ · BðRÞ þ BðRÞ · μþ d · EðRÞ þ EðRÞ · d�;

ð6Þ

whereHðintÞ
FW is the interaction Hamiltonian. The operator of

the magnetic dipole moment of a moving centroid obtained
from Eq. (4) is given by

μ ¼ β
eðLþ 2sÞ

2ϵ
: ð7Þ

This equation agrees with Refs. [15,19,45,46]. When the
weak-field approximation is not used, it can be obtained
that the magnetic dipole moment of a twisted particle in a
magnetic field is proportional to the kinetic OAM r × π
and is affected by the additional current. This current is
proportional to −eA and leads to a weak diamagnetic
effect [2,3,47].
To perform a general quantum description of a twisted

Dirac particle in external fields, we need to add terms
dependent on the electric field. For a pointlike Dirac particle,
these terms have been obtained in Refs. [24,29,48]. If one
disregards spin effects, one needs to add only the term
eΦðrÞ. It has been proven in Ref. [49] that the passage to
the classical limit in the FW representation reduces to a
replacement of the operators in quantum-mechanical
Hamiltonians and equations of motion with the correspond-
ing classical quantities. The motion of the intrinsic OAM
causes the electric dipole moment d which interaction with
the electric field should be taken into account. Certainly,
dð0Þ ¼ 0 in the rest frame of the twisted electron. The results
obtained in Refs. [19,50] show that in the classical limit

d ¼ β × μ; β ¼ V
c
≡ _R

c
: ð8Þ

The centroid velocity operator, V, can be obtained from the
FW Hamiltonian:

V ¼ i½HFW;R� ¼
β

2

�

1

ϵ
; π0

�

:

Since we use the weak-field approximation, we neglect the
correction to this formula proportional to the electric field. A
comparison with Refs. [24,29,48] allows us to obtain the
formula for the operator of the electric dipole moment:

d ¼ β
e
4

�

1

ϵ
β × L − L × β

1

ϵ

�

¼ e
4

�

1

ϵ2
π0 × L − L × π0 1

ϵ2

�

: ð9Þ

Thus, the general FW Hamiltonian for a relativistic
twisted particle in electric and magnetic fields is given by

HFW ¼ βϵþ eΦ − β
e
4

�

1

ϵ
L · BðRÞ þ BðRÞ · L 1

ϵ

�

þ e
4

�

1

ϵ2
L · ½π0 × EðRÞ� − ½EðRÞ × π0� · L 1

ϵ2

�

:

ð10Þ

In this equation, spin effects are disregarded because they
can be neglected on the condition that L ≫ 1. The term eΦ
does not include the interaction of the intrinsic OAM with
the electric field.
Equation (10) exhaustively describes the quantum

dynamics of the intrinsic OAM in the general case of a
twisted Dirac particle in arbitrary electric and magnetic
fields. In particular, the equation of motion of the intrinsic
OAM has the form

dL
dt

¼ i½HFW;L� ¼
1

2
ðΩ × L − L ×ΩÞ;

Ω ¼ −β
e
4

�

1

ϵ
;BðRÞ

�

þ e
4

�

1

ϵ2
π0 × EðRÞ − EðRÞ × π0 1

ϵ2

�

: ð11Þ

When EðRÞ ¼ 0, we obtain the relativistic quantum-
mechanical equation for the Larmor precession. A com-
parison with results obtained in the Dirac representation
shows strengths of the FW one. In Refs. [15,16], a
relativistic description of twisted electron beams in a
uniform magnetic field has been given in the former
representation. However, the corresponding equation of
motion of the OAM has not been obtained in these works.
Another important problem is the relativistic quantum

dynamics of the kinetic momentum. It is defined by the
force operator:
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F ¼ dπ0

dt
¼ ∂π0

∂t þ i½HFW; π0�

¼ eEðRÞ þ β
e
4

�

1

ϵ
; ðπ0 × BðRÞ − BðRÞ × π0Þ

�

þ FSGl:

ð12Þ

Beam splitting in nonuniform electric and magnetic fields
is conditioned by the Stern-Gerlach-like force operator

FSGl ¼ β
e
4

�

1

ϵ
∇½L ·BðRÞ� þ∇½BðRÞ ·L�1

ϵ

�

−
e
4

�

1

ϵ2
∇ðL · ½π0 ×EðRÞ�Þ−∇ð½EðRÞ× π0� ·LÞ 1

ϵ2

�

:

ð13Þ
The force is exerted to the center of charge of the centroid.
Equations (5) and (13) demonstrate an importance of a
general description which includes particle interactions
with nonuniform fields. Like Eq. (5), Eq. (13) presents
the Stern-Gerlach-like force in terms of the centroid
parameters. It is important to mention that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ p2
p

is
an effective mass of the twisted particle.
We can conclude that the quantum-mechanical equations

obtained in this Letter agree with the corresponding
classical results given in Ref. [19].
In the present Letter, we consider two important appli-

cations of the results obtained and describe new effects
which experimental study allows one to ascertain funda-
mental properties of twisted electron beams.
Rotation of the intrinsic OAM in crossed electric and

magnetic fields.—Previously fulfilled experiments used
coherent superpositions of two twisted beams moving in
a longitudinal magnetic field (z axis). Landau modes with
equal amplitudes, the same radial index n, and opposite
projections of the intrinsic longitudinal OAMs undergo the
rotation with the Larmor frequency [3,13,37]. This rotation
is similar to the Faraday effect in optics [37]. We propose a
similar and a simpler experiment in crossed electric and
magnetic fields satisfying the relation E ¼ −β × B, where
E⊥B⊥β and β is the normalized beam velocity. Such fields
characterizing the Wien filter do not affect a beam
trajectory. We suppose the fields E and B to be uniform.
In the considered case, the classical limit of the relativ-

istic equation for the angular velocity of precession of the
intrinsic OAM is given by

ΩðWÞ ¼ −
eðm2 þ p2Þ

2ϵ3
B: ð14Þ

Since p2 ≪ m2, Eq. (14) agrees with the corresponding
equation obtained in Ref. [19].
While the experiment proposed is similar to the above-

mentioned experiment carried out in Refs. [13,37], it needs
a simpler experimental setup. It is necessary to use a single

twisted electron beam possessing a standard orbital polari-
zation collinear to the beam momentum (z axis). The
direction of the magnetic field B and the quasimagnetic one
β × E is transversal (x axis). Therefore, the intrinsic OAM
rotates in the yz plane with the angular frequency ΩðWÞ and
reverses its direction with the angular frequency 2ΩðWÞ.
Since twisted electron beams are relativistic, a quantitative
verification of Eq. (14) can be fulfilled. Thus, the experi-
ment proposed is a critical experiment for a verification
of the main equations for the FW Hamiltonian and the
intrinsic-OAM dynamics obtained in the present Letter.
Radiative orbital polarization of twisted electron beams

in a magnetic field.—The radiation from twisted electrons
is one of their fundamental properties. It is caused by their
acceleration in external magnetic and electric fields and by
the time dependence of their magnetic moments. The latter
effect conditions the magnetic dipole radiation [51]. Its
intensity is standardly much smaller than that of the electric
dipole radiation due to the particle acceleration. The
magnetic dipole radiation proportional to the intrinsic
OAMs is important for the Cherenkov radiation and the
transition one [51]. Since the particle motion in a magnetic
field is accelerated, we can consider only the electric dipole
radiation. For particles closed in storage rings, it is
conditioned by radiative transitions between Landau levels
and is called the synchrotron radiation. As a rule, magnetic
focusing is used. We expect that a storage and an accel-
eration of twisted electrons in cyclotrons (electron rings)
will be carried out in the near future. Evidently, these
processes cannot vanish the intrinsic OAM due to the
conservation of angular momentum. A natural process of
an orbital depolarization is caused by a loss of the beam
coherence and is not important for the considered problem.
The initial orbital polarization of twisted electrons is
longitudinal (z axis), while their expected final polarization
is vertical and antiparallel to the main magnetic field (y
axis). The beam incoherence does not influence the vertical
orbital polarization.
We predict the new effect of a radiative orbital polari-

zation of twisted electron beams in a magnetic field—the
orbital Sokolov-Ternov effect. The well-known effect is the
radiative spin polarization of electron or positron beams in
storage rings caused by the synchrotron radiation (Sokolov-
Ternov effect [39]). It consists in the radiative spin
polarization that is acquired by unpolarized electrons,
and it is opposite to the direction of the main magnetic
field. The reason for the effect is a dependence of spin-flip
transitions from the initial particle polarization. The
standard analysis [39,52] can be extended on the twisted
particles. It follows from the results obtained in
Refs. [12,53] that quantum-electrodynamics effects are
rather similar for twisted and untwisted particles. In
particular, the amplitude of elastic scattering of two vortex
electrons is well approximated by two plane-wave scatter-
ing amplitudes with different momentum transfers, which
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interfere and give direct experimental access to the
Coulomb phase [53].
However, an influence of the synchrotron radiation on

the orbital polarization of twisted relativistic particles needs
a detailed separate study. In this Letter, we restrict ourselves
to a consideration of some aspects of this problem. First of
all, we should note the evident similarity between inter-
actions of the spin and the intrinsic OAMwith the magnetic
field [see Eq. (4)]. In particular, energies of stationary states
depend on projections of the spin and the intrinsic OAM on
the field direction. This similarity validates the existence of
the effect of the radiative orbital polarization. As well as the
radiative spin polarization, the corresponding orbital polari-
zation acquired by unpolarized twisted electrons should
be opposite to the direction of the main magnetic field.
The effect is conditioned by transitions with a change of a
projection of the intrinsic OAM. The probability of such
transitions is large enough if the electron energy is not too
small. Similarly to the spin polarization, the orbital one is
observable when electrons are accelerated up to the energy
of the order of 1 GeV. The acceleration can depolarize
twisted electrons but cannot vanish L. During the process
of the radiative polarization, the average energy of the
electrons should be kept unchanged. For additional explan-
ations, see Supplemental Material [54].
Thus, a discovery of the fundamental property of the

radiative orbital polarization needs much higher energies
than usual energies of twisted electron beams (about
300 keV). We consider this as a positive factor because
the twisted (vortex) states of particles can play an important
role in high-energy physics.
In this Letter, we have studied the special properties of

relativistic twisted particles moving in nonuniform electric
and magnetic fields. The general FW Hamiltonian has been
derived and a Stern-Gerlach-like force has been presented
in terms of the centroid parameters. Furthermore, a bench-
mark experiment has been proposed to confirm the dynam-
ics of the intrinsic OAM of twisted electrons with a very
simple experimental setup. At last, we have predicted a new
orbital Sokolov-Ternov effect for a twisted electron beam in
a magnetic field, which can be measured with a high-
energy twisted electron beam. The present state of quantum
mechanics of twisted electrons is controversial because it
uses the nonrelativistic approximation for a description of
relativistic objects. Our relativistic approach substantiates
(and generalizes) the most of the previous results. We have
correctly introduced the interaction of the intrinsic OAM
with the electric field into quantum mechanical equations
for the first time, and we have corrected the equation of its
motion in the electric field previously obtained in Ref. [2].
The relativistic approach shows that the Landau levels in
the uniform magnetic field are not equidistant.

This work was supported by the Belarusian Republican
Foundation for Fundamental Research (Grant No. Φ16D-
004), by the National Natural Science Foundation of China

(Grant No. 11575254), and by the Heisenberg-Landau
program of the Federal Ministry of Education and
Research of Germany (Bundesministerium fur Bildung
und Forschung). A. J. S. also acknowledges the hospitality
and support from the Institute of Modern Physics of the
Chinese Academy of Sciences. The authors are grateful to
I. P. Ivanov for helpful exchanges.

*alsilenko@mail.ru
†zhpm@impcas.ac.cn
‡zoulp@impcas.ac.cn

[1] M. Uchida and A. Tonomura, Generation of electron beams
carrying orbital angular momentum, Nature (London) 464,
737 (2010); J. Verbeeck, H. Tian, and P. Schattschneider,
Production and application of electron vortex beams, Nature
(London) 467, 301 (2010).

[2] K. Bliokh, Y. Bliokh, S. Savel’ev, and F. Nori, Semiclassical
Dynamics of Electron Wave Packet States with Phase
Vortices, Phys. Rev. Lett. 99, 190404 (2007).

[3] K. Y. Bliokh, I. P. Ivanov, G. Guzzinati, L. Clark, R. Van
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