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We study three-dimensional noncompact QED with a single two-component massless fermion and
two infinitely massive regulator fermions of half the charge using the lattice overlap formalism. The parity
anomaly is expected to cancel exactly between the massless and regulator fermions in the continuum, but
this cancellation is inexact on a lattice akin to lattice chiral gauge theories. We show nonperturbatively that
parity-breaking terms vanish in the continuum limit at any finite volume. We present numerical evidence
that the resulting parity-invariant theory spontaneously breaks parity in the infinite volume limit.
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Introduction.—The standard model of particle physics
is anomaly free due to an exact nontrivial cancellation of
gauge anomalies [1] from different representations to all
orders of perturbation theory. Chiral anomalies outside
perturbation theory can be discussed geometrically [2] and
the relation between consistent and covariant currents [3]
plays a central role. Such fundamental issues should be
addressed in any nonperturbative formalism of chiral gauge
theories. The overlap formalism of chiral gauge theories on
the lattice [4] was motivated [5] by an attempt to regularize
a specific chiral gauge theory using an infinite number of
Pauli-Villars fields [6] and the ability to use domain walls
to create a chiral zero mode [7]. In order to discuss the
problem of chiral anomalies in a gauge covariant and
geometric manner, a two-form in the space of gauge fields
defined through the curl of the difference between the
covariant and consistent currents was introduced within
the overlap formalism in Ref. [8], and it was identified
to be Berry’s curvature. Two sources contribute to this
Berry’s curvature for a chiral fermion in an anomalous
representation—the first is due to the genuine continuum
gauge anomaly that cannot be removed, and the second is
due to the spatial smearing of the anomalous contribution
due to finite lattice spacing. There is just the contribution
due to smearing in an anomaly free chiral theory which
can only be removed by fine-tuning the irrelevant terms in
fermion action on the lattice [8]. The exceptions to the fine-
tuning are QCD-like vector theories where the anomaly
cancellation is trivial.

The odd-dimensional analog to chiral anomalies is parity
anomaly [9–12] and this also can be discussed geometri-
cally [13]. In this Letter, we consider a three-dimensional
analog to the chiral gauge theories, where there is a nontrivial
cancellation of parity anomaly between massless fermions
and infinitely massive fermions, which is a property unique
to three dimensions. The theory we consider is an Abelian
Uð1Þ gauge theory with one massless Dirac fermion of
charge q and two infinitely massive fermions of charges
q=2 in a three-torus with physical size, l3. This corresponds
to the Euclidean continuum theory, with an implicit
regularization,

L¼ ψ̄ð=∂þ iq=AÞψ −
q2i
8π

ϵμνρAμ∂νAρþ
1

4
FμνFμν; ð1Þ

written in standard notation in units where the coupling
constant g2 ¼ 1. This theory has phenomenological rel-
evance to the low-energy physics of fractional quantum Hall
effect at half-filled Landau level [14–16]. Like in even
dimensions, lattice regularization of this theory within the
overlap formalism [4,17,18] does not succeed in an exact
cancellation of the parity anomaly. A salient result in this
Letter is the numerical evidence for the restoration of parity
invariance in the continuum at any finite physical volume
without the need for fine-tuning the fermion action, which
suggests a similar situation to hold in even dimensional
chiral gauge theories as anticipated in Ref. [8]. This will also
establish the existence of such three-dimensional theories
outside perturbation theory. Wewill then present a numerical
study of this theory in the infinite volume limit and provide
evidence for spontaneous breaking of parity.
Modus operandi.—As is standard in lattice field theory,

we discretize the physical volume l3 using L3 lattice points
with the lattice spacing being l=L [19]. The continuum
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limit is achieved by taking the L → ∞ limit at fixed value
of l. For the Abelian theory, the dynamical real lattice
variables are θμðnÞ at the link connecting the lattice point at
n to nþ μ̂. The lattice regularized partition function of the
model in Eq. (1) using the overlap formalism [17,18,20] is

Zðl; LÞ ¼
Z

½dθ�e−SgðθÞ det
�
1þ Vθ

2

�
det2V†

1
2
θ
; ð2Þ

where SgðθÞ is the noncompact gauge action on the lattice
(obtained by discretizing the F2

μν term). The unitary
operator Vqθ depends on the compact link variables
Uq

μðnÞ ¼ eiqθμðnÞ where q is the charge of the fermion
coupled to the gauge field. We have set q ¼ 1 in Eq. (1) and
the first determinant factor realizes the effective action
obtained by integrating out the massless fermion in Eq. (1)
and the second determinant factor realizes the Chern-
Simons term in Eq. (1) as induced by an infinitely massive
fermion.
If we define the induced action 2Aq from the infinite

mass fermion via, detVqθ ≡ exp ð2iq2AqÞ, then we expect
AqðθÞ to be independent of q for smooth gauge fields
[11,12,21,22], and be the same as the level-one Chern-
Simons action. If we perform the Euclidean parity trans-
formation, under which Vqθ → V†

qθ, the path integral in
Eq. (2) transforms to

Zðl; LÞ ¼
Z

½dθ�e−SgðθÞ det 1þ Vθ

2
det2V†

1
2
θ
e−2iAðθÞ; ð3Þ

where

AðθÞ ¼ A1ðθÞ −A1
2
ðθÞ: ð4Þ

Parity anomaly cancellation in the continuum means that
2A ¼ 0 or equivalently, A ¼ nπ for n ¼ 0, �1 as L → ∞.
On the lattice, however, the nontrivial anomaly cancellation
between two different charges will result in 2AðθÞ being
zero only on classically smooth backgrounds. An ensemble
of gauge field configurations on the lattice away from the
continuum limit will not be smooth and we do not expect
2AðθÞ ¼ 0ðmod2πÞ, leading to

det
1þVθ

2
det2V†

1
2
θ
¼
����det1þVθ

2

����eiAðθÞ; A∈ ð−π;π�; ð5Þ

which forms the core of the problem addressed in this
Letter.
Our strategy can be summarized as follows. Using the

rational hybrid Monte Carlo (RHMC) [23–25] method,
an algorithm based on molecular dynamics evolution, we
numerically simulate the theory on the lattice using the
positive definite measure

pþðθÞ ¼
���� det 1þ Vθ

2

����e−Sg ; ð6Þ

and consider the phase eiA to be part of the observables.
Our first aim is to study the distribution ofA generated at a
given l and L and show that the distribution has a tendency
to approach a delta function for all l as we take L → ∞. As
the lattice spacing increases with l in a range of numeri-
cally feasible values of L, we can only provide reasonable
numerical evidence for parity anomaly cancellation over a
limited but wide range of l. Our second aim in this Letter
is to assume that parity anomaly cancellation holds for all
values of l and study the infrared physics of the model in
Eq. (1) using pþðθÞ as the measure.
Anomaly cancellation.—Using the LAPACK subroutines

[26], we determined the phase AðθÞ. Figure 1 shows the
distribution PðAÞ of AðθÞ as sampled using pþðθÞ in three
panels, top to bottom, for l ¼ 4, 32, 200, respectively.
Within each panel for a fixed l, the different symbols
correspond to different lattice spacings. Due to the parity-
invariant measure pþðθÞ, the distributions are almost
symmetric with small deviations resulting from finite
statistics. We notice from the l ¼ 4 and 32 panels that
PðAÞ gets sharper as one approaches the continuum limit
L → ∞. However, this approach of the width of the
distribution to zero is hard to see in the l ¼ 200 panel,
and it is understandable since the finest lattice spacing
(L ¼ 16) at l ¼ 200, where we were able to compute A is
5.4 times larger than the one at l ¼ 32 (L ¼ 14). By
putting together the data for A from all l and L, we now
justify that the distributions at larger l will indeed get
sharper at prohibitively large values of L. Since one expects
the remnant phase A to be a volume integral of local
irrelevant terms, we show the variance per unit physical
volume, l−3VarðAÞ, as a function of lattice spacing, l=L,

FIG. 1. The distributions of AðθÞ at different physical volumes
l3 are shown in the three panels. The different symbols
correspond to different L.
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in the left panel of Fig. 2. The data points of the same
colored symbol belong to a fixed value of l but differ in L,
while different colored symbols correspond to different l
as specified near them. The data approximately falls on a
universal curve, with VarðAÞ ∼ L−1 at smaller l=L. On the
right panel of Fig. 2, we show the scaled peak height of
the distribution, l3=2PðA ¼ 0Þ, as a function of l=L. The
approximate data collapse suggests a

ffiffiffiffi
L

p
increase in the

peak-height at smaller l=L. As expected, higher order
effects in lattice spacing come into play in both figures for
larger l=L. Based on these empirical observations, we find
reasonable evidence for PðAÞ to approach a delta function
in the continuum limit at a fixed l and it is important that
one takes the continuum limit before taking the infinite
volume limit.
We now discuss the sign of the fermion determinant. The

distribution PðAÞ on the coarser lattices, such as the one at
l ¼ 200, covers the entire range ð−π; π�, but still remains
peaked at zero. Based on the arguments above, this implies
that the distribution in the continuum limit will be peaked
around zero, in spite of values ofA close to π being allowed
in the essentially continuous molecular dynamics evolution
of gauge fields used by the RHMC algorithm on coarser
lattices. In principle, we could have found a separation of
our ensemble into two sectors on coarser lattice spacings
(corresponding to AðL ¼ ∞Þ ¼ 0 and �π) easily identi-
fied by a doubly peaked PðAÞ. In this case, it would have
been necessary to have a zero of the fermion determinant
along the RHMC’s canonical evolution as the continuum
limit is approached. Since we did not find this to be the
case, our result is consistent with the absence of topological
zero modes in odd-dimensional space without a boundary
[27,28]. In this manner, we have succeeded in demonstrat-
ing that Eq. (2) has a parity invariant as well as an
effectively positive measure in the continuum.
Another quantity relevant to the anomaly cancellation is

Jqi ðnÞ ¼
δ

δθiðnÞ
AqðθÞ; ð7Þ

which is a fermion-induced pseudovector current in lattice
units, and the expectation value of its magnitude is EqðnÞ ¼
hJqðnÞ · JqðnÞiþ. One expects Jqi ðnÞ to depend locally on
the flux ∼ϵijkΔjθk, but need not be ultralocal and get
smeared around n as discussed in Ref. [8]. In the absence
of such an ultralocality, EðnÞ ¼ E1ðnÞ − E1=2ðnÞ will not
vanish at finite lattice spacing but it must vanish faster than
E1ðnÞ and E1=2ðnÞ as one approaches the continuum. In
Fig. 3, we put together the data from all l and L for E1 and
E1=2 at an arbitrarily chosen n, and show it as a function of
lattice spacing l=L. The data from different values of l fall
on the same curve due to the local nature of this observable.
The lattice spacing scaling of E1 and E1=2 is l=L, the same
as the average local energy density. With this combined
data, we see that E falls off with the lattice spacing like
ðl=LÞ3, faster than E1 or E1=2 by two powers of lattice
spacing, ensuring again that the theory will be parity-
invariant at all values of l studied here.
Having demonstrated the path integral measure is

anomaly free in the continuum limit, it is also imperative
that we show the vacuum expectation values of parity-odd
observables vanish in the continuum limit. Decomposing
any observable O into its parity-even and odd components
Oe and Oo, respectively, its expectation value can be
written as

hOðθÞi ¼ hOeðθÞ cosAðθÞiþ
hcosAðθÞiþ

þ i
hOoðθÞ sinAðθÞiþ

hcosAðθÞiþ
: ð8Þ

We want to show that in the continuum limit, the parity-
even first term on the right-hand side becomes hOeiþ and
the parity-odd second term vanishes. We consider the
correction Ce þ iCo ¼ hOi − hOeiþ as a function of L.
For O, we used the dimensionless lowest positive eigen-
value λþ1 ðθÞl of the inverse of massless Hermitian overlap
Dirac propagator, iG−1ðθÞL ¼ ið1þ Vθ=1 − VθÞL, at dif-
ferent L. In Fig. 4, we show the decreasing behavior of
both Co and Ce at different fixed l, as L is increased. The
different colored symbols in the plot belong to different l.
At any finite L, Co is significantly nonzero and indeed
decreases when the lattice spacing is made smaller. On finer
lattices, a distinct L−Δ behavior with an empirical value

FIG. 2. The variance (left panel) and the height of the
distribution at A ¼ 0 (right panel) for PðAÞ, both scaled by
appropriate powers of l, are shown as functions of lattice
spacing.

FIG. 3. The dependence of E1, E1=2 and their difference, E, on
lattice spacing l=L.
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Δ ≈ 1.5 is seen. For the data at larger l=L, a downward
curvature is seen implying the asymptotic values of Δ will
be greater than what can be extracted from the data (which
is about 1.2). On the other hand, the ultraviolet physics of
anomaly cancellation seems to decouple from the infrared
parity-even expectation values, as seen from the fact that Ce

is much less than 0.1% of h1
2
½λþ1 ðθÞ þ λþ1 ðθpÞ�liþ (and

about 2 to 3 orders of magnitude lesser than the corre-
sponding Co) in the range of l we studied. In fact, for
L > 10, Ce ≈ 0 within a 1.5–σ error range.
Spontaneous symmetry breaking of parity.—Having

numerically established a parity-invariant theory with a
positive measure in a certain range of l that was numeri-
cally accessible, we will assume this to be the case for
higher values of l and study the infrared behavior of
the theory by taking the l → ∞ limit using the pþðθÞ
measure. A possibility is the spontaneous symmetry break-
ing (SSB) of parity leading to a nonzero bilinear condensate
Σ, i.e., at finite fermion mass m and infinite volume,
hψ̄ψiðmÞ ¼ Σðm=jmjÞ þOðmÞ. To study this, we focus on
the discrete dimensionless Dirac operator eigenvalues
ordered by magnitude, 0 < lλ1ðθ;lÞ < lλ2ðθ;lÞ < …,
(which are technically obtained from LjG−1ðθÞj), at finite
l. We first take the L → ∞ continuum limit of hλiðlÞli
(using L from 12 to 24) at different fixed l ranging from 4
to 250 for this study before considering the l → ∞ limit.
The probability distribution of λiðθ;lÞ, as sampled in

the Monte Carlo calculation, will exhibit several well
separated peaks consistent with a spectrum that is discrete.
Perturbation theory will hold as l → 0 and hλiðlÞi will be
proportional to l−1. If the theory spontaneously breaks
parity as l → ∞, then hλiðlÞi ∼ l−3 (due to a finite
eigenvalue density near zero [29]) and in addition, the
distributions of the individual eigenvalues should also
match with those from an appropriate random matrix
theory (RMT) ensemble [30–32]. If we define ΣiðlÞ
through the means hλiðlÞi and zi of the two respective
distributions,

hλiðlÞiΣiðlÞl3 ¼ zi; ð9Þ

then ΣiðlÞ for different i should approach the same nonzero
value Σ (the value of the condensate) as l → ∞.
Figure 5 shows a comparison of the distributions of

the scaled, four low-lying Dirac eigenvalues, l3Σiðl; LÞ
λiðθ;l; LÞ, to the distributions from the RMT, which are
shown as solid curves in the plots. The top panel shows the
volume dependence of the distributions at a fixed number
of lattice points L ¼ 20. One can see the distributions
approaching the RMT as l is increased from l ¼ 64 to
l ¼ 250. The bottom panel shows this agreement between
the Dirac and RMT eigenvalue distributions at l ¼ 250
is robust as the number of lattice points L is made larger
from L ¼ 14 to 20. A quantitative estimate shows that the
deviation of the data from the RMT distributions becomes
smaller with increasing l and approaches zero in the
infinite volume limit. This agreement with RMT shows
the presence of SSB.
Figure 6 shows ΣiðlÞ as extracted from the matching

with RMT using Eq. (9), as a function of l. The different
symbols are the values of ΣiðlÞ; i ¼ 1, 2, 3, 4 in the
continuum at different fixed l. At any finite l the values
of ΣiðlÞ from different i do not agree, as expected.
Assuming the existence of the finite nonzero value of
the condensate Σ in the infinite volume limit, we used
ΣiðlÞ ¼ Σi þ k1l−1 þ k2l−2, to fit the entire range of finite

FIG. 4. The approach of Co (left) and Ce (right) to 0 in the
continuum limit. FIG. 5. Comparison of the distributions of λiΣiðlÞl3 (symbols

connected by dotted lines), and the RMT eigenvalues zi (solid
curves). The red, green, blue, and purple curves correspond to
i ¼ 1, 2, 3, 4, respectively. Top: Volume dependence at fixed
L ¼ 20. Bottom: Lattice spacing dependence at l ¼ 250.

FIG. 6. The infinite volume extrapolation of ΣiðlÞ. The red,
green, blue, and purple points and curves correspond to i ¼ 1, 2,
3, 4, respectively.
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l data. These fits are shown by the curves. The inset
magnifies the large l region. We find the extrapolated
values of Σi × 105 from i ¼ 1, 2, 3, 4 to be 1.5(3),1.5(3),
1.0(2), and 1.2(2), respectively. Though the extrapolated
values are about factor 5 smaller than the available data
point, the agreement between different extrapolated values
of Σi, together with the remarkable agreement with RMT
distributions are indications of a unique Σ ≠ 0 at infinite l.
Discussion.—An earlier attempt [33] to verify the

cancellation of anomalies in a two-dimensional chiral
gauge theory by directly establishing gauge invariance in
the continuum suffered from the fact that there is no
concept of smooth gauge transformations in the continuum
limit. In light of the results in this Letter, it would be
interesting to revisit this problem by a computation of the
continuum limit of the Berry’s curvature [8] in a sequence
of lattice gauge field ensembles at different lattice spacings.
Of experimental relevance are the response functions of the
single flavor theory studied here with the topological
current coupled to a background compact gauge field ϕ,
which can be realized in our lattice setup by including the
term det ½Vθ−ϕV

†
θV

†
ϕ� in Eq. (2). This particular model

appears in recent discussions of duality between fermion
theories [34–36]. It would be interesting to see if the SSB
has any effect on the induced action for ϕ. It is trivial to
extend the overlap formalism presented here for three-
dimensional QED with an arbitrary number of flavors (N)
of massless Dirac fermions and arbitrary number of
flavors (k) of infinite mass fermions. This is a numerical
challenge that could benefit from the various approaches
developed for the sign problem in finite density QCD.
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