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Bosonization techniques are important nonperturbative tools in quantum field theory. In three
dimensions they possess interesting connections to topologically ordered systems and ultimately have
driven the observation of an impressive web of dualities. In this work, we use the quantum wires formalism
to show how the fermion-boson mapping relating the low-energy regime of the massive Thirring model in
three spacetime dimensions with the Maxwell-Chern-Simons model can be obtained from the exact
bosonization in two dimensions.
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Introduction.—Bosonization is one of the main tools to
analyze nonperturbative properties of quantum field theo-
ries and condensed matter systems in 1þ 1 dimensions
(2D). From the properties of the Fermi surfaces in one
spatial dimension, one can show that such a fermion-boson
relation is always possible through an explicit operator
identification of the fermion with the boson field [1]. This
strict one-to-one correspondence between fermion and
boson models, in general, does not survive in higher
dimensions [2]. However, we can still find many instances
where fermionic and bosonic models are dual within certain
regimes in dimensions higher than two. Particularly in
2þ 1 dimensions (3D), a conjectured fermion-boson rela-
tion has driven the observation of an impressive web of
dualities, which has interesting connections to topologi-
cally ordered systems [3–7]. Coupling with a Chern-
Simons gauge field seems to play a decisive role in the
promotion of bosonization to three dimensions. This goes
back to the discussion in Ref. [8], which demonstrated the
spin transmutation mechanism ruled by the Chern-Simons
field when coupled to fermion and boson fields.
The Thirring model (TM) has been an interesting arena

of fruitful insights into the bosonization program since the
works of Refs. [1,9,10] in 2D. Using functional techniques,
the authors in Ref. [11] showed the relation between the
massive TM in 3D with the Maxwell-Chern-Simons (MCS)
model in the large mass limit. The emergence of a gauge
invariance from the TM comes as a surprise in the approach
of Ref. [11]. In an independent line of development, this
matter is clarified starting with a reformulation of the TM as

a gauge theory [12–15]. Furthermore, the idea is general-
ized to arbitrary dimensions, and the connection between
several intermediate models is revealed using master
Lagrangians [16,17]. In addition to the interest in the
context of high-energy physics, the TM model appears
frequently in condensed matter systems. It plays an
important role in the description of interacting electrons
restricted to move in one spatial dimension (Luttinger
model), where the bosonization is specially useful once it
essentially provides an exact solution of the interacting
problem [18]. The TM can also be relevant in higher-
dimensional systems. In this line, the authors in Ref. [19]
discuss how the massive 3D TM can emerge from the low-
energy limit of a tight-binding model of spinless fermions
on a honeycomb lattice generalizing in this way the
TM-MCS relation to condensed matter physics.
Our goal of this Letter is to show how the fermion-boson

map in 3D can be obtained from the exact bosonization in
2D. Contrary to the previous discussions, we will use an
operator-based approach to bosonization. Concretely, we
split one of the spatial dimensions of the system and treat it
as a discretized one, transforming the system into a set of
quantum wires [20–22]. In this way, we can use the
bosonization recipe of 2D in each one of the wires. A
similar strategy was used in Ref. [23] to derive a three-
dimensional fermion-fermion duality presented in
Ref. [24]. With this approach, we are able to recover the
MCS low-energy limit of the massive Thirring model and
the bosonization rule for the fermionic current. We believe
that this program can be useful for investigating further
connections in the web of dualities in 3D.
Thirring model and quantum wires.—We start by con-

sidering the massive Thirring model in 2þ 1 dimensions

L ¼ ψ̄i=∂ψ þMψ̄ψ −
g2

2
JμJμ; ð1Þ
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with Jμ ¼ ψ̄γμψ . As is well known, this model is perturba-
tively nonrenormalizable (on the other hand, in the case ofN
fermionic fields, it is renormalizable in the large-N expan-
sion). To make sense of it, we suppose the existence of a
mass scaleΛ that cut off the high-energy modes of the spinor
field. Using this mass scale, we can define the dimensionless
coupling constant λ2 ≡ g2Λ. In the weak coupling pertur-
bative regime, the current-current interaction is irrelevant and
should play no role in the low-energy regime of the model.
However, we are just interested in a possible strong coupling
scenario λ2 ≫ 1, where a perturbative treatment is not
applicable. Using functional methods, the authors in
Ref. [11] show that the model (1) is equivalent to the
Maxwell-Chern-Simons theory in the infinity mass limit
M → ∞. It is clear that in the low-energy regime E ≪ Λ, the
particle states created by the fermion operator cannot be
excited in this limit, and the resulting nontrivial low-energy
theory signals for the existence of fermion-antifermion
bound states in the low-energy spectrum.
We will use the 2D operator formalism to understand

how the 3D bosonization can follow from the fermion-
boson operator relation in 2D. To this end, we consider a set
of quantum wires with Hamiltonian density

H ¼
XN
i¼1

−ψ i†
R i∂xψ

i
R þ ψ i†

L i∂xψ
i
L

þ 1

a
ðψ iþ1†

L ψ i
R − ψ i†

Lψ
i
R þ H:c:Þ

þMðψ i†
Lψ

i
R þ H:c:Þ þ λ2a

2
½ðJiLÞ2 þ ðJiRÞ2�

þ λ2bJ
i
LJ

i
R − λ2cðJiyÞ2; ð2Þ

where a is a short-distance cutoff, which can be understood
as the interwire spacing. This Hamiltonian follows from
the discretization of the y direction in the Lagrangian (1)
and the identification ψðt; x; yÞ → ð1= ffiffiffi

a
p Þψ iðt; xÞ. We are

using the conventions γ0 ¼ σ1, γ1 ¼ −iσ2, γ2 ¼ iσ3, and
ημν ¼ ð1;−1;−1Þ, with the two-component spinor
ψT ¼ ðψR;ψLÞ. The fields ψ i

L=Rðt; xÞ are then interpreted
as left and right moving fermions within each quantum
wire. Upon discretization, the derivative term in the y
direction in Eq. (1) is replaced by the hopping term in the
first line. We also have included the ðJL=RÞ2 terms
compared to the original Lagrangian. The effect of these
terms is only to renormalize the velocity of the chiral
modes. We need such a possible velocity renormalization
since we are starting our analysis from the Hamiltonian
instead of the Lagrangian. Since the Hamiltonian is not
Lorentz invariant, the regularization used to define it
properly will give rise to Lorentz noninvariant renormal-
izations. An example is the distance cutoff a, which breaks
Lorentz symmetry, contrary to the Lorentz invariant mass
cutoff Λ introduced in Eq. (1). For the same reason, we left
the coupling constants λa, λb, and λc completely unrelated

at this point. After we take care of the divergences present
in Eq. (2), bosonize and take the continuum limit again, we
will adjust the renormalization conditions to render Lorentz
invariant quantities.
The original model (1) has a Uð1Þ global symmetry

ψ 0 ¼ eiαψ , which leads to the current conservation law
∂μJμ ¼ 0. From the coupled set of quantum wires in Eq. (2),
this global symmetry gives the conservation of the total
current

P
iJ

i
α, with α ¼ t, x. To track back the local charge

dynamics in the quantum wires system, we need to inves-
tigate the flow of charge into and out of each wire due to
charge tunneling interaction operators, i.e., the operators that
break the Uð1Þ symmetry ψ i0 ¼ eiα

i
ψ i, which corresponds

to an independent global transformation for each one of the
wires. Pursuing this analysis, one obtains the expression
of the intrawire charge nonconservation ∂tJit þ ∂xJix ¼
ði=aÞðψ iþ1†

L ψ i
R − ψ i†

Lψ
i−1
R − H:c:Þ≡ Δiðiψ iþ1†

L ψ i
R þ H:c:Þ,

with Jit ¼ ψ̄ iγ0ψ i, Jix ¼ ψ̄ iγ1ψ i, and Δi is a discretized
derivative operator. This equation recovers the information
of the local charge conservation in the quantum wires
system. With this discussion, we identify the currents

JiL=R ¼ ψ i†
L=Rψ

i
L=R and Jiy ¼ iψ iþ1†

L ψ i
R þ H:c: ð3Þ

in the interactions in Eq. (2). As usual, these currents should
be defined with the usual normal ordering point splitting
prescription.
Bosonization.—Following the conventions of Ref. [21],

we bosonize the Hamiltonian (2) according to the fermion-
boson mapping:

ψ i
p ¼ κiffiffiffiffiffiffiffiffi

2aπ
p eiðφiþpϑiÞ; ð4Þ

with p ¼ R=L ¼ þ1= − 1. The boson field φ and its dual ϑ
are defined in terms of the chiral boson fields ϕL=R as φi ≡
ðϕi

R þ ϕi
L þ πNi

LÞ=2 and ϑi ≡ ðϕi
R − ϕi

L þ πNi
LÞ=2. The κi

are Klein factors given in terms of the number operators

Ni
p ¼ ðp=2πÞ R dx∂xϕ

i
p according to κi ¼ ð−1Þ

P
j<i

Nj
LþNj

R .
For our purposes, the important commutation relations are
½ϑiðxÞ;φjðx0Þ� ¼ iπδijΘðx − x0Þ, ½ϑiðxÞ; ϑjðx0Þ� ¼ ½φiðxÞ;
φjðx0Þ� ¼ 0, and ½Ni

p;ϕ
j
qðxÞ� ¼ iδijδpq. The fundamental

excitations created by the bosonic field ϑ are fermion-
antifermion bound states. Local polynomials of this field
only span the null charge sector of the model. To create a
charged state inside a wire, one needs extended soliton
solutions. So, the fermion can be seen as a coherent bound
state, as expressed by Eq. (4). This physical interpretation
can be inferred by noticing that the charge density operator
can be shown to be given by ρiðxÞ ¼ ∂xϑ

iðxÞ=π. A unit of
charge within the wire then occurs when ϑ has a kink where
it jumps by π. Nontrivial topological sectors within the
bosonic theory are accounted for by the number operators
Ni

p, which essentially count the solitons inside a wire.
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A direct application of the above rules in the currents in
Eq. (3) as well as in the other terms of Eq. (2) gives us the
bosonic Hamiltonian density

H¼
XN
i¼1

v
2π

�
Kð∂xφ

iÞ2þ 1

K
ð∂xϑ

iÞ2
�
þ 1

aπ

�
M−

1

a

�
sinð2ϑiÞ

−
λ2c

π2a2
½cosðφiþ1−φi−ϑiþ1−ϑiþπNiÞ�2

−
1

a2π
sinðφiþ1−φi−ϑiþ1−ϑiþπNiÞ; ð5Þ

with Ni¼Ni
LþNi

R, v¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þðλ2a=2πÞ�2− ½λ2b=ð2πÞ�2

q
, and

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ ðλ2a=2πÞ − ðλ2b=2πÞ�=½1þ ðλ2a=2πÞ þ ðλ2b=2πÞ�

q
.

The quadratic Hamiltonian describes a gapless system in a
sliding Luttinger liquid phase, whereas the sine and cosine
operators can destabilize the phase and open a mass gap in
the system.

Continuum limit.—In order to safely take the low-
energy continuum limit of Eq. (5), it is convenient
to remove the divergences of the model by normal
ordering the operators. Normal ordering the quadratic
terms only gives an additive renormalization of the
zero point energy. For the interaction operators, we
need to use a basic rule for the exponential of operators
eAeB ¼ eAþBe½A;B�=2 for a c-number commutator ½A;B�.
Then, we can show that for local fields A and B we
have eA ≕ eA∶e1

2
hAAi, ∶eA∶∶eB ≔ ∶eAþB∶ehABi, with

∶eA∶≡ eA
þ
eA

−
, and Aþ and A− being the creation

and annihilation parts of the field A. Using the equal
time correlations hφiðx0ÞφjðxÞi ¼ hϑiðx0ÞϑjðxÞi ¼
− 1

4
ln fμ2½ðx0 − xÞ2 þ a2�gδij, where μ is an infrared mass

that will be fixed soon, to normal order the Hamiltonian
and making the rescalings φi → φi=

ffiffiffiffi
K

p
and ϑi →

ffiffiffiffi
K

p
ϑi,

we get

H ¼
XN
i¼1

v
2π

�
∶ð∂xφ

iÞ2∶þ ∶ð∂xϑ
iÞ2∶

�
þ μ

π

�
M −

1

a

�
∶ sin ð2

ffiffiffiffi
K

p
ϑiÞ∶

−
λ2cμ

2

π2

�
∶ cos

�
1ffiffiffiffi
K

p ðφiþ1 − φiÞ −
ffiffiffiffi
K

p
ðϑiþ1 þ ϑi þ πNiÞ

�
∶
�
2

−
μ

aπ
∶ sin

�
1ffiffiffiffi
K

p ðφiþ1 − φiÞ −
ffiffiffiffi
K

p
ðϑiþ1 þ ϑi þ πNiÞ

�
∶: ð6Þ

By expanding the interaction operators, we would find linear terms in the fields. This suggests a redefinition of the
vacuum of the theory as hϑii ¼ −ðπ=4 ffiffiffiffi

K
p Þ, which gives

H ¼
XN
i¼1

v
2π

½∶ð∂xφ
iÞ2∶þ ∶ð∂xϑ

iÞ2∶� − μ

π

�
M −

1

a

�
∶ cos ð2

ffiffiffiffi
K

p
ϑiÞ∶

−
λ2cμ

2

π2

�
∶ sin

�
1ffiffiffiffi
K

p ðφiþ1 − φiÞ −
ffiffiffiffi
K

p
ðϑiþ1 þ ϑi þ πNiÞ

�
∶
�
2

−
μ

aπ
∶ cos

�
1ffiffiffiffi
K

p ðφiþ1 − φiÞ −
ffiffiffiffi
K

p
ðϑiþ1 þ ϑi þ πNiÞ

�
∶: ð7Þ

To take the continuum limit, we rescale the bosonic fields as Σðt; xÞ → ffiffiffi
a

p
Σðt; x; yÞ, which implies Σiþ1 →

ffiffiffi
a

p
Σþ

a3=2∂yΣ up to irrelevant higher derivative terms. Here, Σ stands for either φ or ϑ. The Hamiltonian (7) can then be expanded as

H ¼
Z

dy
v
2π

½ð∂xφÞ2 þ ð∂xϑÞ2� −
μ

aπ
M −

μ

aπ

�
M −

1

a

�
2Kaϑ2

þ
�
1

2a
−
λ2cμ

π

�
μa2

πK

�
∂yφ −

K
a
ð2ϑþ a∂yϑþ πNÞ

�
2

þ � � � ; ð8Þ

where the dots represent higher power of the fields. To get the large-M limit, we identifyM with the inverse cutoff 1=a. Then,
from the expression above, we can read the squared mass 4½1

2
− ðg2cμ=πÞ�KμM of the ϑ field, with g2c ¼ aλ2c. According with

our initial definition of the two-point function of this field, μ2 should be identified with this mass. This is essentially a
renormalization condition for the two-point function. This consistency identification gives K ¼ αμ=M, with α ¼
½π=4ðπ − 2g2cμÞ� being a finite number. The important point is that K goes like μ=M, and then we get the Hamiltonian
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H ¼ 1

2π

Z
d2r⃗

�
v½ð∂xφÞ2 þ ð∂xϑÞ2�

þ 1

4α2

�
∂yφ − 2μα

�
ϑþ π

2
N
��

2
�
þOð1=MÞ; ð9Þ

where we have omitted the normal ordering symbol for the
quadratic terms.
Maxwell-Chern-Simons theory.—The crucial step to

show the equivalence with Maxwell-Chern-Simons theory
is the identification of the components of electromagnetic
field as

B ¼
ffiffiffi
v
π

r
∂xϑ; Ey ¼

ffiffiffi
v
π

r
∂xφ; and

Ex ¼ −
1ffiffiffiffiffiffiffiffiffiffi
4α2π

p
�
∂yφ − 2αμ

�
ϑþ π

2
N

��
: ð10Þ

This is how the “microscopic” (1þ 1)-dimensional varia-
bles are related to the “macroscopic” (2þ 1)-dimensional
fields. Notice that this is an identification between physical
fields, i.e., between gauge invariant quantities. With this
and taking the limit M → ∞, we can put the Hamiltonian
(9) into the form

H ¼ 1

2

Z
d2r⃗ðE⃗2 þ B2Þ; ð11Þ

which is formally identical to the Maxwell-Chern-Simons
Hamiltonian written in terms of the electric and magnetic
fields E⃗ and B. However, this identification alone is not
enough to ensure the equivalence. We need additionally to
show that these fields defined in terms of φ and ϑ satisfy the
algebra [25]

½Eaðr⃗Þ; Bðr⃗0Þ� ¼ iϵab∂bδðr⃗ − r⃗0Þ and

½Eaðr⃗Þ; Ebðr⃗0Þ� ¼ −iμϵabδðr⃗ − r⃗0Þ; ð12Þ
where the indexes a, b correspond to the x, y components
of the fields. Using the commutators for the φi and ϑi fields,
we can show this is in fact the case, provided the conditions
v ¼ 1 and α ¼ 1=2 are imposed on the parameters of the
Hamiltonian. These conditions are the adjustment in the
finite renormalizations to match the relativistic dynamics.
Thus, out of four initial parameters, λ2a ¼ g2a=a, λ2b ¼ g2b=a,
λ2c ¼ g2c=a, and μ, the two conditions v ¼ 1 and α ¼ 1=2
together with the renormalization condition for the two-
point function of ϑ (K ¼ αμ=M) leave us with only one
independent constant, say, λ2c ¼ g2c=a. This is precisely the
number of independent parameters of the large mass limit
of the 3D Thirring model and also of the MCS model. The
explicit solutions to the above conditions are μ ¼ π=4g2c,
λ2b ¼ 8λ2c½1 − ðπ=8λ2cÞ2�, and

λ2a ¼ 2π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fð4λ2c=πÞ½1 − ðπ=8λ2cÞ2�g2

q
− 1

�
.

With this, we note in particular that the algebra (12) can be
then written in terms of the coupling constant g2c. This
coupling constant, in turn, can be related to the macro-
scopic coupling constant g2 of the 3D Thirring interaction
through g2c ¼ g2=8. The algebra (12) corresponds to the
Maxwell-Chern-Simons algebra that follows from the
Lagrangian

L ¼ −
1

4
FμνFμν þ π

g2
ϵμνρAμ∂νAρ: ð13Þ

Current algebra.—From the 2D bosonization relations,
we have identified the electromagnetic fields in terms of the
bosonic fields in the large mass limit. Let us investigate the
large mass limit directly in the components of the Thirring
current J̃μ ¼ ¯̃ψγμψ̃ , where ψ̃ stands for the Fermion field
(4) with the rescaled bosonic fields ð1= ffiffiffiffi

K
p Þφ and

ffiffiffiffi
K

p
ϑ.

It is then straightforward to obtain the bosonized compo-
nents J̃i0 ¼ J̃iR þ J̃iL ¼ ð ffiffiffiffi

K
p

=πÞ∂xϑ
i and J̃xi ¼ J̃iR − J̃iL ¼

ð1=π ffiffiffiffi
K

p Þ∂xφ
i. Similarly, for the component J̃yi ¼

iψ̃ iþ1†
L ψ̃ i

R þ H:c:, we first obtain

J̃yi ¼ −
1

πa
cos

�
1ffiffiffiffi
K

p ðφiþ1 −φiÞ−
ffiffiffiffi
K

p
ðϑiþ1 þ ϑi þ πNiÞ

�
:

ð14Þ

As before, we identify K ¼ π=Mg2, make the shift ϑi →
ϑi − ðπ=4 ffiffiffiffi

K
p Þ, and to take the large mass limit, we also

make a ¼ 1=M. Then, in the limit M → ∞, we get
J̃yi¼ð1=π ffiffiffiffi

K
p Þf∂yφ

i−ð2π=g2Þ½ϑiþðπ=2ÞNi�g. Because
of the difference in place of the normalization factorffiffiffiffi
K

p
in the J̃i0 component compared to J̃xi and J̃yi, these

three components do not form a covariant three-vector.
This situation is similar to that one found in the Thirring
current in 2D. It is known from Ref. [9] that an extra K
factor is needed in the definition of the spatial component
of the current for a correct treatment of the infinities.
Analogously, we then redefine the current as J̃iμ ¼
ðδμ0 þ Kδμx;yÞ ¯̃ψ iγμψ̃ i, with no sum over μ. With the identi-
fication of the electromagnetic fields above, we then obtain
the usual bosonization rule for the Thirring current in the
large mass limit JμiTh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiðK=πÞp
ϵμνρ∂νAi

ρ, with Ai
μ being

the potential three-vector, such that Bi ¼ ∂xAi
y − ∂yAi

x,
Ei
x ¼ ∂tAi

x − ∂xAi
t, and Ei

y ¼ ∂tAi
y − ∂yAi

t. The 2þ 1

Thirring current Jμ is obtained from Jiμ by just a rescaling
Jμ ¼ ð1=aÞJiμ, which gives

JμTh ¼
ffiffiffiffiffi
1

g2

s
ϵμνρ∂νAρ; ð15Þ
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with Aμ ¼ ð1= ffiffiffi
a

p ÞAi
μ. In particular,

½J0Thðt; x⃗Þ; JaThðt; y⃗Þ� ¼ i
1

g2
ϵab∂bδðx⃗ − y⃗Þ; ð16Þ

½JaThðt; x⃗Þ; JbThðt; y⃗Þ� ¼ −i
1

g4
ϵabδðx⃗ − y⃗Þ; ð17Þ

which is finite in the limit M → ∞ in agreement with the
discussion in Ref. [26]. It is important to mention that one
should be careful in taking the limit g → 0 in our expres-
sions, since this would imply a weak coupling regime of the
model and, consequently, a breaking of our starting
assumption. In fact, one can verify that this leads to
singular expressions in many places. However, it is
interesting to notice that if this limit is taken in the algebra
(16) and (17), one recovers the infinite Schwinger term for
free fermions.
At this point, it is interesting to discuss how the

symmetries are matched on both sides of the duality.
The discrete symmetries are easily compared. Because
of the mass term, the Thirring model is not invariant under
the inversions (the inversions are defined by the operation
of reversing the sign of one of the spacetime coordinates) P
and T but preserves charge conjugation C and the combi-
nation PT. The same is true for the bosonic model, since
the CS term has the same properties as the fermion mass
term, while the Maxwell term preserves all the discrete
symmetries [25]. Concerning the continuous symmetries,
the first puzzle is the presence of aUð1Þ gauge symmetry in
the bosonic model, which is not evident in the fermionic
one. But since this is a local symmetry, the mismatch
should not worry us. In fact, it is long known that even the
Thirring model can be turned into a gauge theory by
introducing auxiliary fields [12–17]. Of more relevance is
the pairing of global symmetries, since these are connected
with the existence of conserved charges. In the Thirring
model, there is a global Uð1Þ symmetry, which leads to
the conservation of electric charge, whereas in the MCS
model, there is an exactly conserved topological current
(∼ϵμνρ∂νAρ), with the flux of the magnetic field being the
associated charge. These are tied through the bosonization
map (15). We can check this correspondence: As we have
discussed in the Thirring model, in addition to the charged
states created by the fermion field, we also have, at the
strong coupling limit, charge-zero bound states present in
the spectrum. By focusing on the low-energy dynamics and
taking the large fermion mass limit, only the bound states
remain. According to the duality, this regime is mapped to
the MCS model, which also describes only charge-zero
states. In fact, considering the field equation ∂iFi0 þ
ð4π=g2ÞB ¼ 0 and integrating over a spatial surface, we
obtain

R
d2xB ¼ 0, after discarding a surface integral of the

electric field, since it decreases exponentially due to the
massive character of the gauge fields.

Conclusions.—We have derived the 3D fermion-boson
mapping relating the low-energy regime of the massive
Thirring model with the Maxwell-Chern-Simons theory
from the exact bosonization rules in 2D. This has been done
by discretizing one spatial dimension and then proceeding
with the operator formalism. A natural question concerns
the extension of the results to the case of finite mass
charged sectors of the Thirring model. In this situation, the
fermionic excitations should be captured on the bosonic
side through the phenomenon of flux attachment, where a
given field can transmute its statistics when coupled to a
Chern-Simons gauge field. It is essential at this point that
the Chern-Simons terms have properly quantized levels and
the gauge field configurations have quantized magnetic
fluxes. In this sense, it is natural to investigate if the Chern-
Simons term in our discussion is the one responsible for
statistics transmutation. If this is the case, the Chern-
Simons level should also be quantized despite the fact that
we are in the zero charge sector of the model, and the gauge
field configurations have vanishing flux.
To explore this possibility, it is convenient to bring the

normalization of the current (15) to the more usual one that
generates the quantized fluxes according toQ ¼ R

J0d2x ¼R ðB=2πÞd2x ¼ Z. To reach this normalization, we need to

rescale the gauge fields as Aμ → ð
ffiffiffiffiffi
g2

p
=2πÞAμ. This rescal-

ing changes the Chern-Simons coefficient in Eq. (13) to
1=4π, which corresponds to a Chern-Simons level 1. With
this level, attaching flux to a scalar field, e.g., can change its
statistics to a fermion. This is compatible with the scenario
where the Chern-Simons term appearing in our study is, in
fact, the one responsible for statistics transmutation and can
be an important clue to the extension of the duality to the
finite mass charged sectors of the Thirring model.
In addition to offering a new perspective on the

bosonization program in higher dimensions, we believe
the formalism discussed is general and useful to study a
wider class of fermion-boson relations in 3D, playing an
important role in the web of dualities. Finally, our con-
struction can also be related with the description of
topological phases of matter in terms of quantum wires,
specifically, with the Abelian quantum Hall phases dis-
cussed in Refs. [20,21]. In this context, this work provides
an interesting starting point for the establishment of a
concrete bridge between microscopic theories based on
fermionic degrees of freedom and effective low-energy
topological field theories given in terms of the Chern-
Simons action.
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