
 

Shiraishi and Mori Reply The preceding Comment by
Mondaini et al. [1] on our Letter [2] raised two issues. One
is on the notion of the eigenstate thermalization hypothesis
(ETH), and the other is on our inappropriate description in
the introduction. As for the second issue, we agree with this
comment (this is our misdescription [3]). In this Reply, we
concentrate on the first issue, and we argue that our
formulation of the ETH is a standard and natural one in
the context of thermalization and that our results are
qualitatively new and nontrivial.
Let us start by distinguishing the diagonal ETH and

the off-diagonal ETH for a given macroscopic observable.
The diagonal ETH has an established definition that the
eigenstate expectation values are described by a smooth
function of energy. In contrast, there exist several defi-
nitions of the off-diagonal ETH [4–7] (see [3]). Although
the diagonal ETH and the off-diagonal ETH naturally
appear simultaneously in the random matrix and quantum
chaos theory [4,5], these two have completely different
roles and properties in the context of thermalization. In this
context, the word “ETH” often means the diagonal ETH
[8–17], and our Letter [2] follows this convention.
We now go back to the Comment. Mondaini et al.

consider a system with no local conserved quantity (LCQ)
but with nonlocal conserved quantities associated with
some symmetries. Correspondingly, the Hilbert space is
divided into several symmetry sectors. Throughout this
Reply, we treat this type of system [3]. The authors’ interest
is in the ETH in the whole Hilbert space (i.e., all sectors)
and that in each sector. We label them as (d1): the diagonal
ETH in the whole Hilbert space, (d2): the diagonal ETH in
each sector, (o1): the off-diagonal ETH in the whole Hilbert
space, (o2): the off-diagonal ETH in each sector.
The Comment numerically shows that both (d1) and (o2)

hold, but (o1) is violated. On the basis of this, Mondaini
et al. claim that the ETH should be considered in each
sector, and the violation of (d1) in systems with no LCQ is
not surprising. We agree that the property of the off-
diagonal ETH depends on the specific sector. However, the
argument below asserts that the diagonal ETH should be
considered in the whole Hilbert space in the context of
thermalization, and that the violation of (d1), which is the
main claim of our Letter [2], is nontrivial and unexpected
before us.
We now argue that the roles of the diagonal and off-

diagonal ETH in thermalization are completely different,
and there are good reasons to put emphasis on (d1). An
initial state thermalizes if and only if (i) the long-time
average of a macroscopic observable is equal to that of a
microcanonical ensemble and (ii) its time fluctuation is
small. The diagonal ETH concerns (i) and the off-diagonal
ETH concerns (ii). In fact, the off-diagonal ETH ensures
(ii) [5]. However, (ii) is also ensured by largeness of the
effective dimension Deff of the initial state. The time-series
fluctuation is proven to be bounded above by of order

Oð1= ffiffiffiffiffiffiffiffi

Deff
p Þ [18–20]. It is numerically shown [21] and

theoretically proven [22] that a generic initial state has a
sufficiently large effective dimension. Thus, (ii) generically
realizes even without the off-diagonal ETH, and therefore
the main subject in the field of thermalization has been
whether (i) holds.
We emphasize that the diagonal ETH in the sense of (d1)

guarantees (i) [16,17], while (d2) does not [23]. Therefore,
if one wants to derive thermalization via ETH, the ETH
should be interpreted as (d1), against the interpretation
by Mondaini et al. Importantly, previous numerical studies
[8–10,24], including Mondaini et al. [1], have shown that
(d1) holds in systems with no LCQ.
Taking these backgrounds into consideration, our results

[2,25]—a model with no LCQ violates (d1) and this model
without (d1) thermalizes after quench—are highly non-
trivial and important for the research of thermalization. We
emphasize that contrary to Mondaini et al. [1], the generic
violation of (o1) never implies the violation of (d1),
because generic systems with no LCQ violate (o1) but
satisfy (d1) [26]. Their numerical result on (o1), which
might be interesting by itself, is irrelevant to our Letter [2].
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