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We numerically investigate the behavior of a phase-separating mixture of a blue phase I liquid crystal
with an isotropic fluid. The resulting morphology is primarily controlled by an inverse capillary number, χ,
setting the balance between interfacial and elastic forces. When χ and the concentration of the isotropic
component are both low, the blue phase disclination lattice templates a cubic array of fluid cylinders. For
larger χ, the isotropic phase arranges primarily into liquid emulsion droplets which coarsen very slowly,
rewiring the blue phase disclination lines into an amorphous elastic network. Our blue phase-simple fluid
composites can be externally manipulated: an electric field can trigger a morphological transition between
cubic fluid cylinder phases with different topologies.
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Composite materials based on complex fluids, such as
liquid crystalline droplets or emulsions [1–5] and colloid-
liquid crystal mixtures [6–9], have received a lot of
attention of late. This is due both to their rich and often
unexpected physical behavior and to their potential as soft
materials with unusual optical, flow, and mechanical
properties. These features may lead to technological
applications. For example, cholesteric droplets can be
utilized as tunable microlasers [10] or in optofluidics
[11,12]. Likewise, photopolymerized blue phase disclina-
tion networks make intriguing switchable electro-optic
devices [13].
From a fundamental viewpoint, the richness in behavior

of many such composites derives from the competition
between different length scales (e.g., droplet size, choles-
teric pitch, defect size), and from the contest between
interfacial and elastic energies [14–16]. The free energy
landscape is often glassy and possesses multiple metastable
structures, where energy barriers dwarf thermal energies.
Structural arrest in this landscape may pave the way to
energy-saving multistable devices which retain memory of
their state in the absence of an external (electric or
magnetic) field [17].
Here, we computationally study a binary mixture of a

blue phase (BP) liquid crystal and an isotropic liquid, and
characterize the resulting behavior and dynamics. BPs are
remarkable liquid crystals (LCs) displaying a 3D network
of disclination lines [18]. Without external fields, BP
disclinations may have either cubic symmetry (blue phases
I and II, BPI and BPII), or be amorphous (blue phase III
[19]). The typical length scale of the network is close to the
pitch of the cholesterics which form the BP, normally a few

hundred nm. Dispersing colloidal nanoparticles or poly-
mers inside BPs leads to a dramatic increase in their range
of thermodynamic stability, as the energetically costly
disclinations are covered by these inclusions [7,20].
Our simulations reveal a number of striking physical

properties for composites of BPI with simple liquids. If
the interfacial tension between the two, σ, is sufficiently
small, then the isotropic component arranges into very
long liquid tubes surrounding the BP disclinations,
creating what we call a “cubic fluid cylinder phase”—
this is similar to the emulsified blue phase first theorized
in [21], although, in our case, no surfactants are required.
Just as polymers or nanoparticles, such liquid tubes can
stabilize the network thermodynamically. In turn, they are
stabilized against the Rayleigh instability by the BP
elasticity. For larger σ, the phenomenology is completely
different: there is a transition to a regime where quasi-
spherical isotropic droplets grow within the BP matrix.
Coarsening does not proceed indefinitely but is arrested
before full phase separation is reached to create an
amorphous, elastic emulsion. This transition can be
understood via a simple mean field theory which iden-
tifies an elastic capillary number as the key control
parameter. Finally, we show that these composites are
reconfigurable: the topology of the cubic fluid cylinder
phase can be altered by an electric field.
Simulation methods.—To simulate a BP mixture, we

consider a free energy functional F ¼ R
fdV. Its density

consists of two parts, f ¼ fϕ þ fQ, describing local
mixture composition and LC ordering, respectively. The
first part can be written in terms of a compositional order
parameter field ϕ as
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where a ¼ b and κ are positive constants. For a cholesteric
LC, fQ can be expressed in terms of a traceless and
symmetric order parameter tensor Q:
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where repeated Greek indices (denoting Cartesian compo-
nents) are summed. In Eq. (2), A0 gives the energy scale, K
is the elastic constant and q0 ¼ 2π=p fixes the equilibrium
pitch length p. We include an electric field E (with
associated dielectric constant anisotropy ϵa), which will
be considered at the end of this Letter. The quantity
γðϕÞ ¼ γ0 þ δð1þ ϕÞ controls the order. We choose γ0
and δ such that γð−1Þ is below the threshold for isotropic-
cholesteric transition, whereas γðþ1Þ is above it. The full
parameter list is given in [22] together with details of initial
conditions, and a mapping between simulation and physical
units in [24]. We highlight that the chirality, κLC ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
108Kq20=ðA0γÞ

p
, and the reduced temperature, τ ¼

27ð1 − γ=3Þ=γ were chosen as κLC ≈ 0.7 and τ ≈ −0.25
throughout, to favor BPI thermodynamically [25]. We do
not include an explicit surface anchoring term; we expect
its addition to further enrich the possibilities for composite
design [9].
The evolution of the LC order Q is given by the Beris-

Edwards equation [26],

ð∂t þ uα∂αÞQ − Sðu;QÞ ¼ ΓH; ð3Þ
where Sðu;QÞ accounts for flow-induced LC rotation [22],
Γ is related to the rotational viscosity and the molecular
field H ¼ −½ðδF=δQÞ − 1

3
ITrðδF=δQÞ�. The velocity

field uα satisfies a Navier-Stokes equation where the stress
tensor includes elastic contributions [22,27]. The equation
of motion for ϕ is

∂tϕþ ∂αðϕuαÞ ¼ M∇2μ; ð4Þ
where M is a constant mobility and μ ¼ ðδF=δϕÞ is the
chemical potential. We solve the equations of motion using
a hybrid lattice Boltzmann (LB) algorithm [27]. To min-
imize discretization artifacts, we include thermal noise in
the Navier-Stokes equation [28]; this is set at a level too
weak to qualitatively change the structural dynamics on the
length scales of interest here [29]. Simulations were carried
out in a 128 × 128 × 128 cubic periodic simulation box,
where the BPI unit cell size λ ¼ p=

ffiffiffi
2

p
[25] is either 32 or

64 lattice units—the defect core ξ and interfacial width ξϕ
are both much smaller and of the order of a few lattice
units [22].

Results.—All the simulations presented have the iso-
tropic component as the minority phase. Figure 1 shows the
behavior of a 90∶10 LC:isotropic mixture with a low value
of the interfacial tension (σ ¼ 5.4 × 10−4 in simulation
units, or ∼10−5 Nm−1 in physical units [24]). The com-
ponents rapidly demix so that the isotropic fluid is
templated by the cubic symmetry of the emerging BPI
disclination pattern (Movies 1 and 2 in the Supplemental
Material [22]), in agreement with theoretical predictions
[21]. We name the resulting structure a cubic fluid cylinder
phase, because the topology of the isotropic component is
templated by that of the cubic BPI. The elastic character of
the latter then stabilizes the fluid cylinders against the
Rayleigh instability that would cause them to break into
droplets if surrounded, instead, by a second fluid.
To explain why a cubic fluid cylinder phase forms, we

propose a simple mean-field argument. The elastic free
energy cost per unit length Eel associated with a cylinder of
radius r containing a straight disclination line (with charge
s ¼ −1=2, relevant for BPs [18]) of core radius ξ can be
estimated by assuming that the defect core is isotropic, as
follows:

Eel ¼ E0ðr=ξÞ2 for r < ξ;

Eel ¼
πK
4

logðr=ξÞ þ E0 for r ≥ ξ: ð5Þ
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FIG. 1. Formation of a cubic fluid cylinder phase. (a) BPI
disclination network (blue ribbons). (b) In a 90∶10 BP:isotropic
mixture with low σ (χ ≡ σξ=K ≈ 0.019), the isotropic fluid self-
organizes to form tubes following the cubic symmetry of the
BPI disclination network. (c) The free energy of the system as
a function of time t (simulations performed using parameter set
A [22]).
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In Eq. (5), E0=ξ2 ∼ A0 is the uniform free energy density
associated with the melting of the isotropic defect core. (In
our simulations, and in reality, the core is not fully melted
but weakly biaxial; this would change only prefactors
above.) This needs to be compared with the interfacial
free energy per unit length associated with the formation of
a cylindrical tube of isotropic fluid of radius r, Ein ¼ 2πσr.
The fluid tube forms if δE ¼ Ein − Eel < 0, in which case
the selected radius, r�, is found by minimizing δE, giving
r� ¼ K=ð8σÞ. This solution only holds for σ < σ�, where
σ� is given by the formula

σ�ξ
K

¼ 1

8 exp ð1 − 4E0

πK Þ
: ð6Þ

As previously mentioned, E0 ∼ A0ξ
2, whereas the core size

ξ ∼
ffiffiffiffiffiffiffiffiffiffiffi
K=A0

p
[30], so the right hand side of Eq. (6) is a

constant. Therefore, within our mean field theory, the
physics is determined by the dimensionless parameter
χ ≡ σξ=K, controlling the ratio between interfacial and
elastic properties—we call this an inverse elastic capillary
number. Equation (6) leads to the expectation of a discon-
tinuous transition between a regime where the isotropic
component forms cylinders wetting the disclination net-
work (for σ < σ�) and another regime where such cylinders
disappear (for σ > σ�). Anchoring with finite strength W
(units N/m) would introduce another dimensionless param-
eter, w ¼ W=σ; reasoning as in Ref. [31] suggests that
anchoring effects are unimportant if Wr�=K < 1 (w < 8).
Residual effective anchoring due to implicit couplings
betweenQ and∇ϕ is estimated to be small from inspection
of the director field profiles (Movie 2 in the Supplemental
Material [22]).

Thermodynamically, the cubic fluid cylinder phase
should be stable when the LC:isotropic ratio is ∼p=r�
but coexist with an excess of one or another pure phase,
otherwise. Indeed, in Figs. 2(a)–2(e) (and Movie 3 in the
Supplemental Material [22]) we show that the dynamics for
an 85∶15 emulsion with χ ≈ 0.019 is significantly different
from that of Fig. 1 (for a 90∶10). A liquid tube network still
forms early on, but is unstable: the structure, later on, twists
and rearranges leading to the formation of isotropic fluid
domains of irregular shape [Figs. 2(b)–2(d)]. These slowly
coarsen until they reach a seemingly arrested “elastic
emulsion” state at late times [Fig. 2(e)].
When χ is increased [χ ≈ 1.9, Figs. 2(f)–2(j) andMovie 4

in the Supplemental Material [22], for an 80∶20 mixture]
the mixture morphology changes again. Following a deep
quench into the demixed phase, fluid droplets coarsen and
interact with the BPI disclination network, forming an
emulsion of spherical droplets [Fig. 2(f) and Movies 4 and
5 in the Supplemental Material [22] ]. Droplets are con-
nected to each other by disclinations, creating elastic
interactions between them. Nearby droplets can coalesce
[see highlighted dotted region in Figs. 2(g)–2(i)] and small
subcritical droplets shrink in favor of larger nearby ones,
through a process akin to Ostwald ripening [see highlighted
dashed region in Figs. 2(f) and 2(g)]. At late times, the
dynamics slows down until we again find a seemingly
arrested metastable structure [Fig. 2(j), and Movie 4 in the
Supplemental Material [22]]. The arrest of Ostwald ripen-
ing is expected whenever the continuous phase has a yield
stress [32]; this may apply here despite the rewiring of BPI
into an amorphous disclination network [33]. For this value
of χ, the droplet-disrupted defect network is reminiscent of

(f) (g) (h) (i) (j)

(c)(b) (d) (e)(a)

FIG. 2. Dynamics of BP mixtures with different values of χ and LC:isotropic composition. (a)–(e) Dynamics of a low interfacial
tension system (χ ≈ 0.019), with 85∶15 composition, starting from an initially mixed state. Snapshots correspond to: (a) t ¼ 2 × 105

(simulation steps); (b) t ¼ 7 × 105, (c) t ¼ 1 × 106, (d) t ¼ 2.5 × 106, (e) t ¼ 9.6 × 106. (Simulations performed using parameter set B
[22].) (f)–(j) Dynamics of an 80∶20 BP mixture with higher interfacial tension (χ ≈ 1.9). Snapshots correspond to: (f) t ¼ 1.8 × 106,
(g) t ¼ 2.1 × 106, (h) t ¼ 2.2 × 106, (j) t ¼ 6.4 × 106. (Simulations performed using parameter set C [22]).
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structures observed with hard colloids in BPs [6,7,9].
However, the dynamics of formation of these structures
is very different in the two cases. Similar dynamics and
arrest as shown in Figs. 2(f)–2(j) is observed for different
compositions, including a 90∶10 emulsion (Movie 6 in the
Supplemental Material [22]).
Experimentally, σ, ξ, and K should be ∼1 mN=m,

∼10 nm and ∼10 pN, respectively, yielding a typical
χ ∼ 1, corresponding to arrested droplets [Figs. 2(f)–2(j),
see, also, [24] ]. It might, though, be possible to decrease χ
to reach the cubic fluid cylinder regime, for instance by
employing as the second component a mesogenic liquid
that is chemically similar to the chiral LC but has a lower
clearing temperature so that it remains isotropic within the
thermal stability range of the BP. The latter could give a
50-fold reduction in σ [34].
Next, we consider the time-dependent domain size

LðtÞ ¼ 2π
R
Sðk; tÞdk=R kSðk; tÞdk, where k ¼ jkj [35].

Here, Sðk; tÞ ¼ hϕðk; tÞϕð−k; tÞi is the structure factor
at time t. We compare L to the BP unit cell size, λ. Figure 3
shows plots of LðtÞ for all cases presented hitherto. For low
χ, corresponding to self-assembly of the cubic fluid
cylinder phase [Fig. 1(b)], LðtÞ rapidly settles to L ∼
ðλ=4Þ (for a 90∶10 mixture with χ ≈ 0.019, dotted-dashed
line in Fig. 3). When the amount of isotropic fluid is
increased, the dynamics of LðtÞ reflects the events visu-
alized in Figs. 2(a)–2(e) (or Movie 3 in the Supplemental
Material [22]). Initially LðtÞ ∼ ðλ=4Þ as a cubic fluid forms.
This structure is only metastable due to the excess of
isotropic fluid, so, later on, LðtÞ shows a rapid growth
which appears to saturate at late times. While the curve
does not become completely flat in Fig. 3, the dynamics is
many orders of magnitude slower than observed with
binary simple fluids [35]. For the case favoring spherical
droplets [Figs. 2(f)–2(j), and Movies 4 and 6 in the
Supplemental Material [22]], the domain size shows an
immediate rapid growth corresponding to coarsening. Later
on, LðtÞ settles to a value ∼1.2λ (solid and dashed lines
in Fig. 3).

Now, we demonstrate that our BP-based elastic emul-
sions can be manipulated and controlled with an electric
field. In Fig. 4 (and Movie 7 in the Supplemental Material
[22]), we show the dynamics of a 90∶10 emulsion with low
χ ≈ 0.019 under a strong electric field along the z axis.
Without field, the mixture self-assembles into a cubic fluid
network. Under the applied field, the isotropic fluid
follows the reorganizing disclination network closely
[Figs. 4(a)–(c)], including an intermediate state with a
square lattice of disclinations perpendicular to the field
[Fig. 4(b)]. The time development of LðtÞ confirms this
[Fig. 4(d)], growing from its ∼ðλ=4Þ value in the zero field
configuration, to L ∼ 0.45λ: the plot displays two blips
corresponding to the formation of the intermediate and final
cubic fluids [Figs. 4(b) and 4(c), respectively].
Conclusions.—We have shown that a mixture of a blue

phase (BPI) and an isotropic fluid leads to a range of elastic
emulsions with fascinating dynamical and phase behaviors.
We have identified a key control parameter, χ ¼ σξ=K,
which determines the relative importance of interfacial
and elastic forces, and which, together with the mixture
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FIG. 3. Time evolution of the domain length scale LðtÞ for
different values of χ and emulsion compositions.
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FIG. 4. Dynamics of a 90∶10 mixture of low σ (χ ≈ 0.019) in
a strong electric field along the z axis (into the page). The
strength of the field is quantified by the dimensionless quantity
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27ϵaE2=ð32πA0γÞ

p
: in our case, e ≈ 0.24 (given the

mapping in [24], this may be realized with E ∼ 25 V=μm
for a LC with ϵa ∼ 1.8 × 10−10 F=m). (a) Snapshot of the
starting configuration at t ¼ 0 (no field). When the field is on,
the isotropic fluid (red) follows the rapidly reorganizing defect
network (blue). (b), (c) Snapshots corresponding to t ¼ 5 × 104

(b), and to t ¼ 2 × 105 (c). (d) Plot of the domain length scale
LðtÞ=λ as a function of time. (Simulations performed using
parameter set D [22]).
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composition, determines most of the observed physics. For
small values of χ, and sufficiently small concentrations of
the isotropic component, we observe the self-assembly of a
cubic fluid cylinder phase, where the isotropic fluid
arranges into cylinders which replace the disclination lines
of the BPI network. Unusually, this structure contains
unbranched, straight fluid cylinders extending in all three
spatial directions with potential applications in materials
templating [36]. If the fraction of isotropic component is
increased, this cubic fluid structure still forms initially but
is subsequently unstable and collapses to yield irregular
isotropic domains connected by disclination lines. For
larger values of χ, the isotropic fluid arranges into droplets,
which slowly coarsen via a combination of coalescence and
an Ostwald-type process. At very late times, we find an
apparently arrested metastable structure whose typical size
is comparable with the BP unit cell. The cubic fluid
cylinder phase found at low χ can additionally be manip-
ulated with an external field, and we have shown that, in
this way, we can switch between cubic fluids with different
symmetries and/or network topologies.
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