
 

Self-Avoiding Wormlike Chain Confined in a Cylindrical Tube: Scaling Behavior

Jeff Z. Y. Chen*

Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3GI, Canada

(Received 18 January 2018; revised manuscript received 27 April 2018; published 18 July 2018)

Within a confining tube section, the multithreads of a strongly confined, backfolding polymer exert the
excluded-volume repulsions on each other and produce physical properties that are very different from
those of a confined ideal chain. The conformational properties of a such confined wormlike chain are of
fundamental interest and are also practically useful in understanding the DNA confinement problems. Here,
the excluded-volume effects are added to the standard wormlike-chain model by a self-consistent field
theory. The numerical solutions are examined in light of their scaling properties.

DOI: 10.1103/PhysRevLett.121.037801

Introduction.—The last decade has witnessed dramatic
progress in understanding the physical properties of a
confined, long semiflexible chain where a number of basic
physical length scales compete against each other. The
subject matter connects two classical pictures in polymer
physics: de Gennes’s for a weakly confined flexible
polymer and Odijk’s for a strongly confined semiflexible
chain. As experimental applications (in studying, for
example, confined DNA conformations within various
environments) [1–13] of theoretical results [14–24] lie
somewhere in between the weak and strong confinement
limits, the elucidation of the experimental and computer-
simulation results [22,25–41] in terms of basic concepts
established in polymer physics becomes practically and
fundamentally important.
Most real polymer chains, such as DNA molecules,

resemble a cylindrical filament that has a nonzero diameter
d. The physical properties of a confined, ideal wormlike-
chain model (i.e., d ¼ 0) [42–44] are now relatively
well understood. Consider a wormlike chain of length L
confined in a cylindrical tube of diameterD [see Figs. 1(a)–
1(d)]. In a standard model, in free space the persistence
length P is a basic scale below which the polymer segment
cannot easily bend. Two emergent length scales are usually
used to describe the tube-confinement problem: the deflec-
tion length λ that describes the length of a typical polymer
segment that is free from wall contact [45], and the global
persistence length g beyond which the polymer makes
hairpin turns [17], both as functions of D=P. These length
scales are explored through Monte Carlo (MC) simulations
[14–16,19,29,38,39] and quantitative solutions to the
wormlike-chain model [23,24].
The physical properties of a confined, self-avoiding

wormlike-chain model (d ≠ 0) build on those of an ideal
chain and display their own distinct scaling behavior. For a
long polymer chain (L ≫ g, assumed here), it is expected
that the reduced physical properties depend on two param-
eters d̃ ¼ d=P and D̃ ¼ D=P. Using λ and g, Odijk

unraveled new power laws for a self-avoiding chain [20]
within the “backfolded Odijk regime” [36] [simply referred
to as the “Odijk regime” here, shown in Fig. 1(e)].
Recently, Dorfman’s group has claimed that this distinct
regime was observed and verified using their MC data for
confinement in a square tube [36], circular tube [38], and
rectangular tube [39]. This regime is also believed to exist
for DNA confinement in a recent review [46]. Using a
“telegraph” comparison, Werner et al. developed a one-
parameter theory [41] in an attempt to capture experimental
data in a universal view; there are, however, obvious
deviations of some data from their theory.
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FIG. 1. Length scales in the wormlike-chain confinement
problem. Plots (a)–(d) illustrate the physical scales of the
extended de Gennes (EdG) regime, Odijk regime, almost un-
folded regime, and unfolded regime. Plot (e) quantitatively
defines the Odijk regime according to the SCFT solution of
the free energy. Plot (f) summarizes main findings of the present
work, which identifies the scaling behavior in the white and green
areas, in terms of reduced excluded-volume diameter d=P and
confinement tube diameter D=P. The recent experimental results
on DNA confinement are conducted for systems having param-
eters in the gray area.
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This Letter presents a rigorous solution to the confined
self-avoiding wormlike-chain problem with both d̃ and D̃
originally present in a standard model. The study indicates
that unified scaling laws as powers of a single scaling
parameter ξ exist in a large parameter area, covering the
extended de Gennes (EdG), crossover, and Odijk regimes
[Fig. 1(f)], which agrees with the assessment of Ref. [41]. A
non-power-law scaling regime of a single ξ exists only in a
very narrow corridor. Beyond these, however, the physical
properties depend on both d̃ and ξ. Most recent simulation
data [36,38] and certainly the DNA thickness dimensions
(summarized in Ref. [41]) either fall outside of the Odijk
regime or need to be described by a two-parameter theory.
Methods.—The calculation is based on the wormlike-

chain model, in which a linear polymer is described by a
continuous curve. A contour variable s, within the range
½0; L�, is specified along the curve, for a chain having a total
contour length L. The spatial position of a point on the
curve at s is represented by the three-dimensional vector
rðsÞ. The unit vector uðsÞ ¼ dr=ds determines the tangent
direction. The probability distribution for a given configu-
ration is assumed to be P ¼ expð−H0 −HintÞ, where the
reduced Hamiltonian

H0 ≡ P
2

Z
L

0

ds

�
du
ds

�
2

ð1Þ

is for a chain without the excluded volume and

Hint ¼ d
Z

L

0

ds
Z

L

0

ds0δ½rðsÞ − rðs0Þ�juðsÞ × uðs0Þj ð2Þ

is for the excluded volume interaction between the polymer
segments at s and s0. The u-dependent vector cross product
involves the relative orientations of two polymer segments,
which was introduced originally by Onsager [47]. The
mathematical difficulty of exactly treating Hint is widely
known.
In this work the well-developed self-consistent field

theory (SCFT) in polymer physics is used, in which Hint
is replaced by an external potential fieldW. The connection
between W and Hint is made through the saddle-point
approximation. This enables the analysis and numerical
calculation of the Green’s function, as the solution to a
differential equation. For a long-chain problem L ≫ P, the
“ground-state-dominating” procedure is taken. The tech-
nical details can be found elsewhere [48]. The main
findings are summarized here.
Scaling properties.—The polymer extension along the

axial direction hZi is an experimentally accessible quantity.
The reduced extension Z̃≡ hZi=L has the asymptotic
limits Z̃ → 0 (as d̃ → 0) and Z̃ → 1 (in the fully unfolded
state). The calculation of Z̃ can be realized by using an
auxiliary field [49] in a SCFT and covers the entire Z̃ range
over (0, 1). A special case is small Z̃; an analytical
deduction yields a power law,

Z̃ ¼ ξ1=3; ð3Þ

with the definition

ξ≡ d̃χ0ðD̃ÞC0ðD̃Þ=D̃2; ð4Þ
based on a first-order perturbation expansion in ξ1=3.
The definition of ξ can be elucidated from a balance

between the entropy penalty of stretching a wormlike
polymer to a mean length hZi and the mean excluded-
volume energy, in terms of a classical Flory argument. The
former is similar to that of aGaussian chainZ2=LPχ0, where
the denominator is the mean square end-to-end distance of a
confined ideal wormlike chain, and the latter is the Onsager
excluded volume energy for the volume hZiπD2=4 occupied
by the polymer, ½ðL=2PÞ2=hZiD2�dP2C0 [44]. Minimizing
the sum of these with respect to hZi yields the power law
above, within a constant prefactor.
Both χ0ðD̃Þ, which is proportional to g [24,39], and the

orientationally dependent excluded-volume energy C0ðD̃Þ
are functions of the cross-section geometry of the confine-
ment. Their full D̃ dependencies for a cylindrical-tube
confinement are numerically evaluated here and displayed
in Fig. 2. The asymptotic behavior at large D̃ is exact and
small D̃ empirical,

χ0ðD̃Þ ¼
�
2=3; when D̃ ≫ 1;

2e2Em=D̃=ðB2D̃Þ1=2 when D̃ ≪ 1;
ð5Þ

C0ðD̃Þ ¼
�
2.0984…; when D̃ ≫ 1;

ð1.21� 0.01ÞD̃1=3 when D̃ ≪ 1;
ð6Þ

where Em ¼ 1.435 57 and B2 ¼ 5.9560. These asymptotes
are plotted in Fig. 2.
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FIG. 2. (a) Cubic C0ðD̃Þ and (b) χ0ðD̃Þ as functions of D̃ for
cylindrical-tube geometry. Circles represent the numerical sol-
utions to the SCFT. The two asymptotic limits, shown by black
and blue lines, are those in Eqs. (5) and (6). The meanings of
symbol colors are the same as in Fig. 1(e).
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On one hand, in the D̃ ≫ 1 limit, Eqs. (3) and (4) reduce
to the scaling properties of the EdG regime and on the other
hand, in the D̃ ≪ 1 limit, the Odijk regime [20]. Hence it is
a unified version, as long as ξ ≪ 1. The existence of a
scaling parameter ξ was noted by Werner et al. in their
analysis of a “telegraph scaling theory” where a similar
parameter α was identified [41].
Figure 3(a) shows the numerical solutions of SCFT for

Z̃ðd̃; D̃Þ as a function of D̃ for various values of d̃, when
cylindrical confinement is considered. The converted scal-
ing plot for Z̃ ¼ ζðd̃; ξÞ is displayed in plot (b). The
dependence of ζðd̃; ξÞ on ξ1=3 is linear when ξ ≪ 1, as
demonstrated by the collapsing of data points in Fig. 3(a) to
the single line in 3(b). The separation between EdG and
Odijk regimes is artificial—the light yellow and yellow
circles (in EdG) and red and pink circles (in Odijk) share
the same power-law line, including the crossover. The
white area in Fig. 1(f) is where Z̃ðd̃; D̃Þ can be represented
by ξ1=3 within 2% accuracy.
The free energy per unit segment of length Pχ0 is a

quantity that can be probed by using advanced Monte Carlo
techniques [38,39] and its experimental observations could
be made by creative approaches utilizing nonuniform
confinement dimensions [52,53]. The saddle-point
approximation of SCFT directly yields an expression for
the free energy. Within the ξ ≪ 1 limit, the SCFT yields a
free-energy difference ΔFðd̃; D̃Þ ¼ Fðd̃; D̃Þ − Fð0; D̃Þ that
follows the unified power law,

ðPχ0=LÞβΔF ¼ ð3=2Þξ2=3; ð7Þ

where β is the inverse temperature. The same ξ2=3 power
law can be deduced from a simple Flory argument; here the
SCFT exactly pins down the coefficient 3=2 from a
perturbation expansion in ξ, regardless of the cross-section
geometry of the confinement tube, as long as it has a
reasonable shape. The full numerical solution to SCFT for
the cylindrical confinement produces a F depending on
both d̃ and D̃ as illustrated in Fig. 3(c). The scaling plot in
Fig. 3(d), Φðd̃; ξÞ≡ ðPχ0=LÞβΔFðd̃; D̃Þ, indeed follows
this power law in the small ξ regime.
What happens beyond the small-ξ regime? Originally the

physical system itself inherently depends on two param-
eters d̃ and D̃. Take Z̃ ¼ Z̃ðd̃; D̃Þ presented in Fig. 3(a) as
an example; instead of the pair d̃ and D̃, the pair d̃ and ξ can
be used by realizing that all D̃ dependence is replaceable by
the well-defined Eq. (4) above. Then, Z̃ ¼ ζðd̃; ξÞ is a two-
parameter function. Figure 3(b) shows ζ as functions of ξ
for various specified values of d̃.
This two-parameter dependence becomes a single ξ

dependence under two circumstances. One is the ξ ≪ 1

regime already discussed (regardless of the sizes of d̃ and
D̃), when the function ζðd̃; ξÞ merges to a unified power
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FIG. 3. (a)–(b) Polymer extension Z, (c)–(d) free energy F, and
(e)–(f) mean-square extension deviation as functions of d̃ and D̃
(left panels) as well as d̃ and ξ (right panels). The original SCFT
solutions are displayed in (a), (c), and (e) where deep-dark red and
deep gray circles represent systems in the unfolded state, dark red
and gray in the almost-unfolded state, red in the Odijk regime,
pink, light yellow, light blue in the crossover region, and yellow
and blue in the EdG regime. The 10 curves, from right to left in (a),
correspond to d̃ ¼ 40; 4−1;…; 4−9. The scaled versions in (b), (d),
and (f) contain all original data, after ξ is calculated from ½d̃; D̃�
according to Eq. (4) inwhich χ0 andC0 are presented in Fig. 2. The
green straight lines in (b) and (d) represent Eqs. (3) and (7). The
insets show the nonlinearity where solid black curves represent
ζð0; ξÞ, Φð0; ξÞ, and γð0; ξÞ, for which the empirical expressions
can be found in the Supplemental Material [50].

PHYSICAL REVIEW LETTERS 121, 037801 (2018)

037801-3



law. The second case is near the Odijk regime when both
d̃ ≪ 1 and D̃ ≤ 1. Note that for a small d̃, ξ can be any
value, adjusted by exponentially large χ0 of a small-D̃
system. A nonlinear regime in the log-log plot of
Fig. 3(b) is entered, where asymptotically a one-parameter,
non-power-law function ζð0; ξÞ exists. The green area in
Fig. 1(f) is where Z̃ðd̃; D̃Þ can be represented by a non-
power law ζð0; ξÞ within 2% accuracy.
Hence, when d̃≳ 10−2, Z̃ must be described by a two-

parameter model beyond the power-law regime, as shown
in Fig. 1(f) and the inset of Fig. 3(b). This is evident in
Ref. [41], in which a one-parameter theory for cases where
hairpins dominate the configuration of the chain and
alignment fluctuations can be ignored is compared to the
experimental measurements. Signs of the need for a two-
parameter model can already be viewed from their
Fig. 4(c), as the data for most systems with larger d̃ and
D̃ deviates more from their own ζð0; ξÞ curve.
Finally, the mean-square deviation of the polymer

extension from the main value is examined here,

hðZ − hZiÞ2i≡ LPχðd̃; D̃Þ; ð8Þ

in terms of χðd̃; D̃Þ as plotted in Fig. 3(e). At d̃ ¼ 0, χ0 ≡
χð0; D̃Þ is shown as the gray curve in the background, which
is directly proportional to g defined in Refs. [17,20]; it
explodes exponentially in large 1=D̃. From extremely small
d̃, illustrated here to demonstrate the asymptotic behavior, to
a moderate d̃, χðd̃; D̃Þ follows χð0; D̃Þ until reaching a peak,
where Z̃ is approximately 0.5. It is in this parameter regime
where the scaled γðd̃; ξÞ≡ χðd̃; D̃Þ=χð0; D̃Þ remains 1
universally, shown in Fig. 3(f). It is also the regime where
Z̃ and ΔF have power laws.
The fact that the left-hand side of (8) is proportional to

LP has been employed when simulation data [39,46] and
experimental measurements [41] are analyzed, whereas the
fact that it must reduce to LPχð0; D̃Þ (hence 2Lg) for small
ξ is not widely appreciated. Often, a constant ratio
χðd̃; D̃Þ=g is determined from computer simulation data,
different from 1. It is not clear whether this is because the
original computer simulations were performed for a non-
asymptotically small d̃, or the determination of gwas off by
a numerical factor.
Beyond the peak and before χðd̃; D̃Þ drastically

decreases, the polymer is in an almost unfolded state where
Z̃ ≳ 0.5. Except for a small region [Fig. 1(f), green] where
the non-power-law scaling function γð0; ξÞ exists, in most
cases the SCFT solution of γðd̃; ξÞ deviates from the
asymptotic γð0; ξÞ, as shown by the inset of Fig. 3(f),
which is consistent with the analysis of the ζðd̃; ξÞ data.
As D̃ decreases further, the polymer reaches an unfold

state. The occurrence of the maximum curvature of the
γðd̃; ξÞ curve at the low-right corner of Fig. 3(f) is used here

as the division between the almost-unfolded and unfolded
states, shown in Fig. 1(f). This happens approximately at
ξ ∼ 1. The system now runs into the “classical Odijk
regime,” termed after Refs. [36,38,39,46], which is a well
studied subject [14–16,19,21,23]. The numerical SCFT
data for Z̃ and χ, for example, now approaches the known
scaling laws [19,21], Z̃ ¼ 1 − ð0.1701…ÞD̃2=3 and
χ ¼ ð0.00754…ÞD̃2, as functions of D̃, not ξ.
Summary.—According to the numerical solution to the

self-consistent field theory for a self-avoiding wormlike
polymer chain, the validity of various scaling properties is
critically examined for the polymer extension, free energy,
and extension variance, in the ½d̃; D̃� parameter space. A
new perspective, which can be used to divide the scaling
behavior, is presented as Fig. 1(f). The main results include
the prediction and verification of a unified power law
regime, the indication of the need for a complete two-
parameter theory rather than one-parameter theory, and the
clarification of the properties of the extension variance over
the entire parameter space.
The present calculation is based on a mean-field

approach, unifying the physical picture previously divided
into extended de Gennes, backfolding Odijk, classical
Odijk (unfolded) regimes, and their crossovers. In the
polymer literature, and certainly the DNA confinement
literature, there is a concern of whether a distinct de Gennes
blob regime exists for a self-avoiding tube-confined poly-
mer, expected at a relatively large D̃ [27,32]. It remains a
challenge to incept a blob concept into the self-consistent
field theory for the current problem. When it happens, the
top if Fig. 1(f) could be augmented by another division line
for the de Gennes blob regime.
The original data can be found by following the link

in Ref. [50].
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