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We determine theoretically the effect of spin-orbit coupling on the magnetic excitation spectrum of
itinerant multiorbital systems, with specific application to iron-based superconductors. Our microscopic
model includes a realistic ten-band kinetic Hamiltonian, atomic spin-orbit coupling, and multiorbital
Hubbard interactions. Our results highlight the remarkable variability of the resulting magnetic anisotropy
despite constant spin-orbit coupling. At the same time, the magnetic anisotropy exhibits robust universal
behavior upon changes in the band structure corresponding to different materials of iron-based super-
conductors. A natural explanation of the observed universality emerges when considering optimal nesting
as a resonance phenomenon. Our theory is also of relevance to other itinerant systems with spin-orbit
coupling and nesting tendencies in the band structure.
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Introduction.—The investigation of magnetism in Fe-
based superconducting materials (FeSCs) has proven to be
a very rich avenue of research [1]. Symmetry-distinct mag-
netic phases have been experimentally identified, both col-
inear and coplanar [2–9], in agreement with theoretical
models [10–14]. Recently, it was discovered that distinct
colinearphasesexhibit completelydifferentorientationsof the
ordered moments [15], pointing to effects from spin-orbit
coupling (SOC). The SOC is typically consideredweak in the
FeSCs, and hence neglected in many theoretical studies.
However, a series of recent observations have reinvigorated
the interest in a detailed understanding of SOC and its role in
magnetism and superconductivity of these materials. Most
prominently, those observations cover details of magnetic
anisotropies as seen by polarized neutron scattering [16–18],
sizable spin gaps in the ordered states∼15 meV [1], aswell as
considerable SOC-induced band splittings of ∼10–40 meV
[19–21], have reinvigorated the interest in a detailed under-
standing of SOC and its role in magnetism and supercon-
ductivity of these materials. In addition, obtaining a
quantitative description of the magnetic anisotropy has
important implications for the general understanding of the
magnetism in terms of mainly localized or itinerant electrons
[1,16]. Finally, we note that the importance of SOC has
recently been highlighted through the experimental report of
topological states and Majorana fermions in a certain class
of FeSCs [22,23].
Experimentally, spin-polarized neutron scattering mea-

surements have mapped out the energy (ω) and temperature
(T) dependence of themagnetic anisotropy. Below,we denote
by Ma, Mb, and Mc the magnetic scattering polarized along
the orthorhombic a, b, and c axes, respectively. Focusing first
on undoped BaFe2As2, in the magnetic state below TN the
scattering fulfills the hierarchy Mc > Mb > Ma. This is in
agreement with QAF ¼ ðπ; 0; πÞ ordered moments aligned

antiferromagnetically in the ab plane along the longer a axis,
and implies that transverse out-of-plane fluctuations along c
are cheaper than in-plane transverse fluctuations in the b
direction [1,17,24,25]. The results in the paramagnetic (PM)
state at T > TN atQAF can be summarized by the following
points: (1) the low-energy magnetic response is isotropic
Mc ≈Mb ≈Ma at high T but becomes increasingly aniso-
tropic withMa > Mc ≳Mb as T approaches TN [17,24,26].
The fact that Ma is largest agrees with the condensation of
moments along the a axis below TN. (2) This PM magnetic
anisotropy close to TN is observed only at ω≲ 6 meV [17].
The doping dependence of the magnetic anisotropy obtained
from electron- and hole-doped BaFe2As2 [18,26–29],
NaFeAs [30], and FeSe [16] has given rise to the following
additional points: (3) doping of BaFe2As2 tends to enhance
the c-axis polarized low-energy magnetic fluctuations in the
PMphasesuch that a rangeexistswhereMc ≳Ma > Mb.The
enhanced susceptibility along c is consistent with the out-of-
plane moment orientation of the C4-symmetric magnetic
phase observed in Na-doped BaFe2As2 [15]. In the nematic
PM phase of FeSe,Mc also dominates the inelastic response
[16]. (4) At sufficiently large doping (e.g., 15% Ni in
BaFe2As2), the magnetic anisotropy vanishes [31].
The hierarchy of the magnetic susceptibilities, their ω

and T dependence, and their switching as a function of
doping has remained an outstanding puzzle, and may
naively seem at odds with an atomically defined single-
ion spin-orbit-generated magnetic anisotropy. For example,
it has been suggested that intervening effects of orbital
fluctuations may be at play [17]. Clearly, it is desirable to
acquire a microscopic understanding of the interplay
between SOC and electronic interactions in the magnetism
of FeSCs.
In this Letter, within a realistic ten-band description that

properly incorporates atomic SOC, we provide a theoretical
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explanation for the above points (1)–(4). We classify the
spin-resolved contributions to the particle-hole propagator
into different types of excitations. By virtue of SOC, the
spin-dependent particle-hole excitations generate a hier-
archy in the energy gaps for spin excitations. We propose a
general mechanism for the doping dependence of the
resulting magnetic anisotropy that turns out to be deter-
mined by the position of the optimal nesting of the band on
the energy axis and the dominant orbital content of the
participating single-particle states. From that perspective,
our study is relevant not just to FeSCs, but any itinerant
system with SOC and nested bands. Both the T and ω
dependence of the anisotropy follow essentially from the
smallness of the SOC energy scale together with the
enhancement of magnetic scattering close to T- or inter-
action-driven spin-density wave (SDW) instabilities.
Model.—Upon inclusion of atomic SOC, the itinerant

electron system of the FeSC materials is described by a
multiorbital Hubbard Hamiltonian H ¼ H0 þHSOC þHint
for the electronic degrees of freedom of the 3d shell of iron.
The noninteracting part describing the electronic structure
consists of a hopping Hamiltonian H0 and an atomic SOC
HSOC. We define the fermionic operators c†liμσ , cliμσ to
create and destroy, respectively, an electron on sublattice l
at site i in orbital μwith spin polarization σ.H0 is written as

H0 ¼
X

σ

X

l;l0;i;j

X

μ;ν

c†liμσðtμνli;l0j − μ0δll0δijδμνÞcl0jνσ; ð1Þ

where hopping matrix elements tμνli;l0j are material specific
and the electronic filling is fixed by the chemical potential
μ0. The indices l, l0 ∈ fA;Bg denote the 2-Fe sublattices,
corresponding to the two inequivalent Fe sites in the 2-Fe
unit cell due to the pnictogen (Pn)/chalcogen (Ch) stagger-
ing about the FePn=FeCh plane. The orbital indices μ, ν
label the five 3d orbitals at a given Fe site. In a suitable
chosen (phase-staggered) basis, see Supplemental Material
[32], the atomic SOC Hamiltonian reads as

HSOC ¼ λ

2

X

l;i

X

μ;ν

X

σ;σ0
c†liμσ½Ll�μν · σσσ0cliνσ0 : ð2Þ

Electronic interactions of the 3d states are modeled by a
local Hubbard-Hund interaction term

Hint¼U
X

l;i;μ

nliμ↑nliμ↓þ
�
U0−

J
2

� X

l;i;μ<ν;σ;σ0
nliμσnliνσ0

−2J
X

l;i;μ<ν

Sliμ ·SliνþJ0
X

l;i;μ<ν;σ

c†liμσc
†
liμσ̄cliνσ̄cliνσ; ð3Þ

parametrized by an intraorbital Hubbard U, an interorbital
coupling U0, Hund’s coupling J and pair hopping J0,
satisfying U0 ¼ U − 2J, J ¼ J0. The operators for local

charge and spin are nliμ ¼ nliμ↑ þ nliμ↓ with nliμσ ¼
c†liμσcliμσ and Sliμ ¼ 1=2

P
σσ0c

†
liμσσσσ0cliμσ0 , respectively.

Below, we will consider three sets of hopping parameters
tμνli;l0j for different FeSC parent materials taken from the
DFT literature: LaFeAsO [33], BaFe2As2 [34], and FeSe
[35], see Fig. 1 for the corresponding orbitally resolved
Fermi surfaces with finite SOC. All three Fermi surfaces
display approximate nesting with nesting vector QAF
between the hole pockets at the center and the electron
pockets at the boundary of the BZ. The FeSe-Fermi surface,
see Fig. 1(c), deviates strongly from typical FeSC Fermi
surfaces. We have modeled the FeSe Fermi surface by
including a self-consistent nearest-neighbor hopping
renormalization [35]. The effect of hole or electron doping
is obtained by a rigid shift in the chemical potential μ0. As
to the choice of SOC values, we limit ourselves to values
producing splittings in the ∼10 meV range in the electronic
spectrum, as observed by angle-resolved photoemission
spectroscopy. When discussing interaction effects for
BaFe2As2, the values of U and J are chosen to bring the
undoped (μ0 ¼ 0 eV) system close to an SDW instability,
where the enhancement of the anisotropy by interactions
becomes most pronounced.
For further details on the band structures and the effects

of SOC, we refer to the Supplemental Material [32].
Spin susceptibility.—To make connection to neutron

scattering, we compute the imaginary-time spin-spin corre-
lation function (here i, j refer to the spatial directions x, y, z)

χijðiωn;qÞ ¼
g2

2

Z
β

0

dτeiωnτhT τSiqðτÞSj−qð0Þi; ð4Þ

with g ¼ 2 and the Fourier transformed electron spin
operator for the 2-Fe unit cell given as

SiqðτÞ ¼
1ffiffiffiffiffi
N

p
X

k;l;μ;σ;σ0
c†k−qlμσðτÞ

σiσσ0

2
cklμσ0 ðτÞ: ð5Þ

FIG. 1. Fermi surfaces in the 1-Fe BZ [(Kx, Ky) denotes
momenta in the 1-Fe BZ coordinate system] extracted from
the orbitally resolved electronic spectral function with μ0 ¼ 0 eV
and λ ¼ 0.025 eV for (a) LaFeAsO, (b) BaFe2As2, and (c) FeSe.
The dashed square denotes the 2-Fe BZ. The green and red parts
of the Fermi surfaces are dominated by yz and xz orbitals,
respectively, while blue corresponds to xy. The contribution of
x2 − y2 and 3z2 − r2 orbitals to the spectral weight at the Fermi
level is negligible.
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To account for interaction effects in the weak-coupling
regime, we evaluate the correlation functions in the
random-phase approximation (RPA) in the absence of
spin-rotation invariance, see Supplemental Material [32].
Performing analytic continuation iωn →ωþ iη, with η > 0 a
small smearing parameter, we gain access to themomentum-
and frequency-resolved spectral density of magnetic excita-
tions with different spatial polarizations probed by polarized
neutron scattering. We haveMiðωÞ ∼ Im½χiiðωþ iη;QAFÞ�,
in a coordinate system x ¼ a, y ¼ b, z ¼ c aligned with the
orthorhombic crystal axes andQAF ¼ Q1;2 with the nesting
vectorsQ1 ¼ ðπ; 0Þ,Q2 ¼ ð0; πÞ, whereQ2 is related toQ1

by a C4 rotation in the ab plane. The cross terms with i ≠ j
vanish for the commensurate wave vector QAF.
Since the interaction term Hint is rotationally symmetric,

it cannot create anisotropy in the magnetic response.
Hence, all SOC-driven anisotropy is contained purely in
the particle-hole propagator, and therefore the origin of
anisotropy is found in the structure of the noninteracting
susceptibility. In terms of the sublattice-, orbital-, and spin-
resolved electronic Greens function, the noninteracting
susceptibility reads

χij0 ðqÞ ¼
1

2

X

σ1…σ4

σiσ1σ2σ
j
σ3σ4Gσ2σ3Gσ4σ1 ; ð6Þ

where for compact notation we defined

Gσ2σ3Gσ4σ1 ≡ −
g2

4βN

X
Glμσ2;l0νσ3ðkÞGl0νσ4;lμσ1ðk − qÞ;

with q ¼ ðiωn;qÞ and k ¼ ðiνp;kÞ, iωn, iνp being bosonic
and fermionic Matsubara frequencies, respectively, and
the shorthand

Pð…Þ ¼ P
k

P
l;l0

P
μ;νð…Þ. According to

Eq. (6), the susceptibility can be decomposed into its orbital
contributions as χij0 ðqÞ¼

P
μ;ν½χij0 ðqÞ�μ;ν. Performing the

Matsubara sum yields a Lindhard factor dressed by wave
vector-dependent matrix elements, see Supplemental
Material [32]. We can then extract the isotropic contribution
to the susceptibility as χ0¼1

4

P
σ½GσσGσσþGσσGσ̄ σ̄�. The

anisotropic contributions, Δχii0 ¼ χii0 − χ0, can be expressed
in terms of three particle-hole amplitudes Δχxx0 ¼ ψþþ − ϕ,
Δχyy0 ¼ −ψþþ − ϕ, Δχzz0 ¼ −ψþ− þ ϕ, where we have
defined the summed amplitudes ψþþ ¼ 1

2

P
σGσσ̄Gσσ̄,

ψþ−¼1
2

P
σGσσ̄Gσ̄σ, ϕ¼1

4

P
σ½GσσGσσ−GσσGσ̄ σ̄�.

In the non-nematic PM state, the anisotropic response at
Q2 is related to that at Q1 by a C4 transformation about
the c axis: Δχxx=yy0 ðQ2Þ ¼ Δχyy=xx0 ðQ1Þ and Δχzz0 ðQ2Þ ¼
Δχzz0 ðQ1Þ. The amplitude ϕ, measuring the difference of
equal- and opposite-spin (with respect to the z axis pointing
out of plane) particle-hole propagation is insensitive to a
C4 rotation. Likewise, the amplitude ψþ− corresponds to
processes that are possible due to SOC, but do not change
the total spin along the z direction. In contrast, the spin-flip

amplitude ψþþ, where both electron and hole with a fixed
initial spin propagate to the opposite spin state by virtue of
SOC, reacts by a sign change. A commonality between the
bands is the sublattice structure of the anisotropy-generat-
ing particle-hole amplitudes. While ψþþ receives only
intersublattice contributions, ψþ− and ϕ only come form
intrasublattice terms.
The physical interpretation of the particle-hole bubble

diagrams can be made more transparent by considering
SOC within perturbation theory. We find that the leading
contribution to the anisotropy at QAF emerges at order λ2

(see Supplemental Material [32] for details). This is in
contrast to previous work [36], where the leading
anisotropy was found to be of the form Jλ2 and depended
crucially on a finite Hund’s coupling. We additionally
investigated the importance of the sign of λ, see
Supplemental Material [32], and found that results for
the magnetic anisotropy are only weakly affected.
Anisotropy without interactions.—Our findings for the

doping dependence of the magnetic anisotropy for the
noninteracting LaFeAsO, BaFe2As2, and FeSe models at
kBT ¼ 0.01 eV are shown in Fig. 2 for several values of λ.
For the 1111 and 122 bands, there exists a clear correlation
between the position of the optimal nesting condition on
the energy axis (that is only weakly dependent on small λ),
see Figs. 2(a) and 2(b), and the central peak in the static
anisotropic response as a function of μ0, seen in Figs. 2(d)
and 2(e). Indeed, the characteristic μ0 dependence of the
anisotropy can be qualitatively reproduced in a simple level
model, see Supplemental Material [32], where the optimal
nesting condition is replaced by isolated levels with xy and
yz orbital content, coupled by SOC. This simple model
also provides the same type of spin-dependent particle-
hole amplitudes as seen in the tight-binding models,
cf. Figs. 2(g) and 2(h), pointing to a universal mechanism
behind the doping dependence of the magnetic anisotropy
across the FeSC materials. In this picture the behavior of
Δχii0 with doping is determined largely by the position of
the optimal nesting condition on the energy axis and the
symmetry properties of the participating orbitals.
For all three tight-binding models, the hierarchy in the

magnetic anisotropy changes with μ0. While the different
realizations of the hierarchy are already apparent at
λ ¼ 0.015 eV, increasing λ enlarges the doping range with
a particular form of the hierarchy. For LaFeAsO and
BaFe2As2 we obtain a dominating χxx0 in the undoped
case, while on the hole-(electron-)doped side, an extended
region with dominating χzz0 (χyy0 ) exists. Sufficiently far
away from the nesting resonance, the magnetic anisotropy
drops rapidly. These findings are in excellent agreement
with properties (3) and (4) highlighted in the introduction.
The most prominent difference in the doping dependence
occurs on the hole-doped side, where Δχxx0 and Δχyy0 in the
LaFeAsO and FeSe models do not display zero crossings,
as opposed to the BaFe2As2 case. In addition, the FeSe
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model, where optimal nesting for xy and yz orbitals is
weakened and occurs in different places on the μ0 axis, see
Fig. 2(c), displays a dominating χzz0 in the undoped case
for sufficiently large λ. This agrees with the recent findings
in Ref. [16], see Fig. 2(f). Both weak hole doping or
increasing λ enhance the dominance of out-of-plane
spin-fluctuations compared to in-plane fluctuations. The
anisotropy is driven by the same type of particle-hole
excitations in all models, cf. Figs. 2(g)–2(i). Only ψþþ and
ψþ− yield sizable contributions in the LaFeAsO and
BaFe2As2 bands, with ϕ basically vanishing. For FeSe
the ϕ amplitude is stronger compared to the 1111 and
122 cases.
Anisotropy with interactions.—The static bare suscep-

tibility provides us with a measure of the gap sizes of spin
excitations with different polarization. We can, thus,
qualitatively connect the results in Fig. 2 to the doping
dependence of the magnetic scattering amplitudes Mi. We
note that we do not expect the RPA (neglecting self-energy
and vertex corrections) to yield quantitative results in terms
of absolute magnitudes of the scattering amplitudes. It is
known that a pure RPA-type quasiparticle calculation
yields too small scattering intensities. There is evidence,
however, that in correlated systems with well-defined
quasiparticles, the inclusion of vertex corrections mainly
shifts the quasiparticle result to realistic amplitudes [37].
Focusing on BaFe2As2, cf. Fig. 2(e), our weak-coupling
approach yields Ma > Mc > Mb in an extended region
around μ0 ¼ 0 eV, consistent with a stripe SDW state with

ordered moments along a. The formation of a finite SDW
order below TN results in the gapping of excitations parallel
to the moment direction. For sufficiently low T in the
stripe magnetic state, we can thus expect Mc > Mb > Ma.
Returning to the discussion of the PM state, for sufficiently
strong SOC, hole doping first leads to a regime with
Mc > Ma > Mb, with a subsequent crossover to Mc >
Mb > Ma upon further hole doping, all consistent with
the observed reorientation of magnetic moments in a C4-
symmetric magnetic phase [15].
We show the ω-dependent RPA results for the imaginary

part of the susceptibility in the various regimes in Fig. 3(a)
for interaction parameters U and J close to the interaction
driven SDW instability with fixed wave vector. For the
undoped case (μ0 ¼ 0 eV) the ω-dependent anisotropy in
the magnetic scattering is clearly visible and diminishes
quickly for ω≳ 6–7 meV. In the hole- (μ ¼ −0.05 eV) and
electron-doped (μ ¼ 0.05 eV) cases, the changes in the
hierarchy of magnetic scattering can be observed with an
overall decrease of the magnetic scattering, while at the
same time the anisotropy appears over a larger energy
range. These differences to the undoped case are simply
due to the increasing degree of incommensurability of the
wave vector associated with the leading SDW instability,
while we observe the magnetic scattering at the commen-
surate wave vector QAF. Thus, the magnetic excitations at
QAF obtain larger gaps for the doped cases than for the
undoped case shown in Fig. 3(a). The T dependence of
Re½χiið0þ iη;QAFÞ� is shown in Fig. 3(b), where χxx

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

FIG. 2. (a)–(c) Chemical potential dependence of the total and orbitally (μ ¼ ν only) resolved isotropic contribution to the static
noninteracting susceptibility with SOC λ ¼ 0.025 eV at kBT ¼ 0.01 eV for the (a) LaFeAsO, (b) BaFe2As2, and (c) FeSe model with
fixed wave vector Q1. (d)–(f) Corresponding anisotropic contributions and (g)–(i) summed particle-hole amplitudes contributing to the
anisotropic magnetic response for λ ¼ 0.015 eV (dashed), λ ¼ 0.025 eV (solid) and λ ¼ 0.035 eV (dot-dashed).
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diverges as T → TN . The anisotropy increases strongly in
the proximity to the SDW transition, while it remains small
for elevated T. The results shown in Fig. 3 are in excellent
agreement with the points (1) and (2) discussed in the
introduction. Thus, we conclude that the model approach
presented here seems to adequately describe the magnetic
anisotropy of FeSCs. Interesting future studies include
calculations of χiiðqÞ in the presence of SOC in the
superconducting state where magnetic anisotropy of the
neutron resonance has been reported by polarized neutron
scattering [16,18,26,38–41].
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