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In this work we introduce boundary time crystals. Here continuous time-translation symmetry breaking
occurs only in a macroscopic fraction of a many-body quantum system. After introducing their definition
and properties, we analyze in detail a solvable model where an accurate scaling analysis can be performed.
The existence of the boundary time crystals is intimately connected to the emergence of a time-periodic
steady state in the thermodynamic limit of a many-body open quantum system. We also discuss
connections to quantum synchronization.
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Introduction.—Spontaneous symmetry breaking is a
cornerstone of physics and occurs at all energy scales, in
cosmology and high-energy physics as well as in con-
densed matter. Thermal or quantum fluctuations can drive a
system into a state that breaks, in the thermodynamic limit,
some of the symmetries present in its (thermo)-dynamical
potentials [1,2]. Can time-translation invariance be sponta-
neously broken? The possible existence of time crystals,
first addressed by Wilczek in Ref. [3], prompted an intense
discussion [4–7]. A no-go theorem [8] ruled out the
existence of time crystals in thermal equilibrium in cases
for which the energy is the only constant of motion. The
situation may be different in the presence of additional
extended conserved quantities [9], such as in superfluids
[10], where time-crystalline behavior was discussed in
Ref. [11]. Ordering in time can also occur, however, under
nonequilibrium conditions (e.g., by preparing the system in
an excited state [12]).
An important step forward in our understanding of

spontaneous time-translational invariance has been achieved
in Refs. [13–15] where Floquet time crystals, also known as
π-spin glasses, were introduced. The dynamics of these
systems, subject to a periodic driving, is characterized by
observables which oscillate at a multiple of the driving
period. Hence they break the discrete time-translation
symmetry imposed by the external drive. Floquet time
crystals were intensively explored from a theoretical point
of view in Refs. [16–22] and very recently experimentally
observed [23,24]. A comprehensive review on time crystals
can be found in Ref. [25].
Here we predict a novel form of time-translation sym-

metry breaking: continuous boundary time crystals (BTCs).
In the BTC phase, symmetry breaking appears in a (macro-
scopic) fraction of the system. Moreove, a BTC breaks the
continuous time-translation symmetry; i.e., the system self-

organizes in a time-periodic pattern with a period which
only depends on its coupling constants. The ideas borrowed
from surface critical phenomena [26] offer a very intuitive
way to visualize BTCs. Only the surface, representing the
portion of the system where time crystalline behavior
appear, is ordered. For the rest of the system, the bulk
remains time-translationally invariant; see Fig. 1. We will
give a more precise meaning to this picture in the rest of the
Letter, where we will show that BTCs are intimately
connected to the existence of periodic motion in the steady
state of open quantum many-body systems.
Boundary time crystals.—Theemergenceof aBTCcanbe

understood using the sketch given in Fig. 1 (top panels). Ad-
dimensional quantum many-body system is governed by a
time-independent Hamiltonian Ĥ ¼ ĤB þ Ĥb þ V̂, with
bulk and boundary systems ĤB and Ĥb, respectively, and
an interaction term V̂. Denoting as Nb ðNBÞ the number of
degrees of freedom (d.o.f.) for the boundary (bulk) systems,
we consider the case in which a macroscopic fraction of the
Universe, the system (Nb → ∞), breaks spontaneously time-
translational invariance. The thermodynamic limit is per-
formed with Nb, NB → ∞, with the ratio Nb=NB → 0. In
other words, it is a macroscopic system, but still small or
infinitesimal compared to the global system. This scaling is
the crucial feature in defining a boundary phenomenon. The
precise identification of the boundary layer (e.g., the nature
or any notion of spatial locality for its d.o.f.) is thus irrelevant
for our purposes. Thewhole system evolves according to the
Schrödinger equation jψðtÞi ¼ e−iĤtjψð0Þi, with jψð0Þi the
initial state of the quantum system. The boundary is fully
characterized by the reduced density matrix ρ̂b ¼
TrBðjψðtÞihψðtÞjÞ obtained by tracing out the bulk d.o.f.
Its dynamics is governed by a completely positive, trace-
preserving, map L̂ with
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d
dt

ρ̂b ¼ L̂½ρ̂b�: ð1Þ

Time-translation symmetry breaking at the boundary
appears as a nontrivial time dependence of a (macroscopic)
boundary order parameter Ôb, occurring only in the thermo-
dynamic limit. For infinitely large times its expectation
oscillates, limNb;NB→∞Tr½Ôbρ̂b� ¼ fðtÞ,wherefðtÞ is a time-
periodic function. The definition of BTC closely follows the
one for the standard time crystals [8,16,17]. The only,
crucial, difference is that here the order parameter is defined
at the boundary.
The resulting physical picture is exemplified in Fig. 1,

taking a magnetic system as an illustration. In this example
a macroscopic magnetization builds up at the surface of a
sample. The magnetization shows persistent oscillations
even though the dynamics of the whole system is governed
by a time-independent Hamiltonian. In Fig. 1 the boundary
and the bulk are represented with different symbols in order
to stress that they may be described by different d.o.f.
Notice that the terms bulk and boundary are used here to
easily visualize the mechanism of spontaneous symmetry
breaking and suggest an intriguing connection with boun-
dary critical phenomena. What is really implied in the

construction above is that ordering in time occurs only in a
macroscopic fraction of the many-body system under
consideration, rather than in the whole bulk.
The boundary nature of time-translation symmetry

breaking in BTC has a number of important implications.
First of all, the reduced density matrix ρ̂b in the steady state
will be generically nonthermal; hence the no-go theorem
[8] does not apply: a Hamiltonian system can spontane-
ously break time-translation symmetry as a boundary
phase. Furthermore, given the well-known correspondence
of the dissipative dynamics in Eq. (1) and a unitary
dynamics governed by a time-independent Hamiltonian
on an enlarged system (see, e.g., Ref. [27]), the BTC
appears tightly linked to the existence of a time-periodic
steady state in an open quantum many-body system,
appearing though only for Nb → ∞. In order to discuss
concrete examples we focus on boundary systems
described by Markovian maps, and comment further below
about more general dissipative maps.
The evolution of the boundary in the Markovian case is

described by a master equation where the Liouvillian
operator L̂½·� has Lindblad form [27], L̂½·� ¼ i½·; Ĥb� þP

αðl̂α · l̂
†
α − 1

2
fl̂†

αl̂α; ·gÞ with l̂α the Lindblad operators
[28]. The emergence of a time-crystal behavior in the long-
time dynamics of the system is hidden in the properties of
the Liouvillian operator in the thermodynamic limit. In the
BTC phase one should expect (i) a vanishing gap in the real
part of the Liouvillian eigenvalues, making the nonequili-
brium steady state subspace degenerate in the thermody-
namic limit with time-dependent coherences decaying over
an infinite timescale, and (ii) a nonzero imaginary part for
some Liouvillian eigenvalues in such subspace in order to
induce nontrivial oscillations. The main question now is to
find a many-body system that displays the above-men-
tioned properties. Below we will present a model of a BTC.
A BTC model.—We will show that a boundary time

crystal appears in a model used to describe cooperative
emission in cavities (see Refs. [35–40]). The boundary
Hamiltonian Ĥb ¼ ω0

P
jσ̂

x
j consists of a collection of 1=2

spins whose dynamics is governed by collective spin
operators Ŝα ¼ 1

2

P
jσ̂

α
j . The operators σ̂αj (α ¼ x, y, z)

are the Pauli matrices acting on the jth spins, and ω0 is the
coherent splitting. The terms ĤB and V̂ (see the sketch in
Fig. 1) have to be constructed in such a way to give a
reduced dynamics at the boundary of the form

d
dt

ρ̂b ¼ iω0½ρ̂b; Ŝx� þ
κ

S

�

Ŝ−ρ̂bŜþ −
1

2
fŜþŜ−; ρ̂bg

�

: ð2Þ

In the previous equation, the collective raising or lowering
spin operators are given by Ŝ� ¼ Ŝx � Ŝy, κ is the effective
decay rate, and S ¼ Nb=2 is the total spin. In the following
the expectations of the observables are indicated as
h·i ¼ Tr½·ρ̂b�.

FIG. 1. (Upper panel) A sketch of a boundary time crystal. The
system is composed by a bulk (B) and a boundary (b) interacting
trough an interaction term V̂. The Hamiltonian of the system is time
independent. After tracing out the d.o.f. of the bulk, the dynamics of
the boundary is described by the reduced density matrix ρ̂b. In the
time-crystal phase, the behavior of collective variables will show
persistent oscillations in the thermodynamic limit. (Lower panel)
The boundary magnetization of the BTC model discussed in the
Letter is shown as a function of time, for different boundary sizes.
In the asymptotic condition, spontaneous symmetry breaking
appears in persistent oscillations when Nb → ∞.
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The specific form of ĤB generating the dynamics in
Eq. (2) will play no role. It is possible to derive it [28].
In the Supplemental Material we discuss in details how
such a construction can be made [41]. Moreover similar
Liouvillian dynamics have been extensively considered in
the context of atomic systems coupled to cavity modes.
Typically, the scenario in which a model such as Eq. (2)
arises involves a system periodically driven at a finite
frequency, with a time dependent Hamiltonian. Depending
on the specific driving, such an explicit time dependence
can be usually gauged away: one can define a Hamiltonian
leading to Eq. (2) which is time independent in some
specific choice of frame. As long as such a Hamiltonian
exists, and is physical, our interpretation of the time-
translation symmetry breaking as a boundary phenomenon
of a closed quantum system is reasonable (see Ref. [41]
for a detailed discussion). Moreover—as we are going to
show—the BTC shows a time-dependent pattern whose
period solely depends on the coupling constants of the
system and which is, in general, incommensurate with the
driving period: the system breaks a continuous symmetry,
rather than a discrete one. The BTC is in apparent contra-
diction with the expectation that the density matrix of a
system in contact with a single thermal reservoir attains a
time-independent steady state [42]. The solution to this
apparent paradox lies in the diverging boundary size,
Nb → ∞, which leads to a divergent decay timescale for
oscillations (see Ref. [41]), as we better discuss below.
The steady state diagram of the model has two distinct

phases [35]. For ω0=κ < 1, the total magnetization is finite
hŜzi. In the opposite case, ω0=κ > 1, all spins align along
the x direction. More details are reported in Ref. [41].
The BTC appears for ω0=κ > 1. Its emergence is

embedded in the properties of the eigenvalues λ of the
Liouvillian L̂. The structure of the Liouvillian spectrum is
indeed different in the two phases. While for ω0=κ < 1 the
spectrum is gapped (Fig. 2, left panel), and the eigenvalues
with greatest values for their real part [i.e., the eigenvalues
closest to zero, recalling that ReðλjÞ ≤ 0] have no

imaginary values, for ω0=κ > 1 the spectrum becomes
gapless and the eigenvalues with greatest real part have
a non zero imaginary part (see Fig. 2). The insets zoom
on the spectrum emphasising the different behavior in the
two limits.
In order to obtain a quantitative picture of the develop-

ment of the spontaneous symmetry breaking we perform a
finite-size scaling analysis of the real and imaginary parts of
the eigenvalues λ. In Fig. 3 (left panel) we analyze the real
part of the Liouvillian spectrum. In theweak dissipative case,
the one of interest to us, the system is gapless, with the real
part of the eigenvalues closing with the system size as a
power law (at different rates). In Fig. 3 (right panel) we show
the imaginary part of the Liouvillian spectrum. The imagi-
nary eigenvalues of the low Liouvillian excitations are
described by bands, separated by a fundamental frequency
Γω0=κ, which depends on the system parameters ω0=κ. These
features of the real and imaginary parts are the key elements
for the appearance of the BTC.
The magnetization, for different numbers of lattice sites,

is plotted in Fig. 1 (lower panel). The system is initialized in
the pure state with all spins aligned along the x direction.
The oscillations decay for any finite size system, the
associated time scale grows with the system size and
diverges in the thermodynamic limit. This behavior is
independent of the initial conditions, as, e.g., starting from
thermal states or all spins aligned in different directions.
Interestingly, the decay rate of the oscillations η is related to

FIG. 2. The eigenvalues λ of the Liouvillian are shown in the
weak dissipative case (ω0=κ ¼ 1.5, right panel) and in the strong
dissipative one for (ω0=κ ¼ 0.5, left panel), in a system with
Nb ¼ 36 spins. The insets show an enlargement over the
eigenvalues with the largest real part. The eigenvalues are plotted
in units of κ. FIG. 3. (Left) Finite size scaling for the real part of the

Liouvillian eigenvalues in the BTC phase. The index j labels
the eigenvalues. The Liouvillian eigenvalues λj are ordered as a
function of their real part (jReðλjÞj ≤ jReðλjþ1Þj, and j ¼ 0 has
zero real part). In the ω0=κ > 1 phase they scale to zero as a
power law of the inverse system size. (Right) The imaginary parts
of the eigenvalues show a band structure, with a fundamental
frequency separation Γω0=κ . For fixed excitation thresholds (we
only select λj such that ν ¼ j2=Nb ≤ ϵ) the width of the bands
remains finite in the thermodynamic limit (here we choose
ν < 0.025). The widths of the bands tend to decrease as we
constrain to lower excitation thresholds. The eigenvalues are
plotted in units of κ.
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the second excited eigenvalue of the Liouvillian, in our
case, the lowest excited eigenvalue with nonzero imaginary
value (eigenvalues are ordered according to the absolute
value of their real part). A quantitative analysis of the
spontaneous symmetry breaking is obtained by looking at
the Fourier transform of hSzðtÞi (see Fig. 4). By performing
a spectral analysis, we see that the peaks appear at
frequencies related to the separation between the bands
shown in the right panel of Fig. 3. The peaks become
sharper as the system size is increased. Most importantly,
the decay rate η goes to zero (right panel) as a power law
L−β with the β exponent dependent on the system param-
eters ω0=κ. The finite-size scaling shows that the persistent
oscillations are associated to the spontaneous time-
translation symmetry breaking because they occur only
in the thermodynamic limit. In the example we have
discussed, the thermodynamic limit incidentally coincides
with an effective classical dynamics (the effective Planck’s
constant going to zero): this is true for instance in Fig. 4
and in Fig. 1 when Nb → ∞; details of the classical
solution are discussed in Refs. [41,43].
From the experimental point of view, a driven version of

this model can be realized using an adapted Raman driving
scheme [45] for cold atoms in an optical cavity, connecting
two low lying states via an excited atomic state. Collective
dissipation can be produced by using a bad cavity (large
loss rate) combined with a single Raman drive: Purcell-
enhanced Raman scattering leads to optical pumping of the
atoms, described by the same collective dissipation con-
sidered here. Similarly, the Hamiltonian term Ŝx can be
realized by a pair of drive lasers coupling the ground states
via excited states.
The boundary time crystal we discussed in the model of

Eq. (2) is not an isolated point, but is robust to different
perturbations. First of all, the time-crystalline phase

appears in the whole region ω0=κ > 1. Moreover, it is
stable if additional perturbations are added to the unitary
part of the evolution. With a boundary Hamiltonian of the
form Ĥb ¼ ω0Ŝ

x þ ωxðŜxÞ2=Sþ ωzðŜzÞ2=S, the time crys-
tal is still present for a wide range of the parameters ωx,
ωz ≠ 0. In fact the ωx term improves the stability of the
time crystal, which is also present for small values of ωz;
for ωz above some threshold, time-translation symmetry
breaking still exists but only for some initial conditions (see
Ref. [41] for details). It is worth mentioning that robustness
of a BTC phase refers to the persistence of a periodic
evolution in the thermodynamic limit, and not necessarily
to the rigidity of its period. The main difference with
respect to Floquet systems is that there, since one is
breaking a discrete symmetry, rigidity is intimately related
to the period of the driving; instead, in our case, since the
dynamics is Uð1Þ invariant, such timescale is not present,
and the period of oscillation is allowed to change within the
symmetry-broken phase. This is a direct analog of the fact
that in spatial crystals, the spatial periodicity can be
changed by changing the particle-particle interaction.
It is also relevant to consider perturbations of the

dissipative part of the evolution, more specifically we
focus on terms nonlocal in time (this is equivalent to
considering a non-Markovian equation of motion). In order
to have a physical bulk Hamiltonian, it must be bounded
from below, and so it cannot have a truly flat density of
states. This implies a finite memory timescale for the bath,
but there is the possibility that this timescale can be
neglected, being far smaller than all the other timescales
in the system dynamics. This fact occurs if the lower bound
on the bulk spectrum is at energies much lower than the
frequencies of the system dynamics: in this case an
approximate Markovian description holds and the use of
a Markovian master equation is perfectly justified.
Other candidate systems for BTCs.—An interesting

model that should show the same phenomenology has been
studied in Ref. [46]. Furthermore, many-body limit cycles
have been already seen in model systems of optomechanical
arrays [47], coupled cavity arrays [48,49], interacting
Rydberg atoms [50] and interacting spin systems [51].
Also in these cases the underlying (bulkþ boundary)
Hamiltonian can be constructed; see Ref. [41]. In light of
the analysis performed in the present work, these limit cycles
nowmight be classified as BTCs. It should be, however, kept
in mind that a mean-field approximation, employed in these
works, may be unable to support the very existence of limit
cycles: it is not clear to which extent this phase would
survive when fluctuations are included.
Other promising systems that it might be interesting to

consider to seek for different forms of BTCs are dissipative
topological systems. In this case, the steady state may
develop a degeneracy in the thermodynamic limit due to
the presence of edge states [52,53]. The existence of a BTC
phase should emerge from the competition of the unitary and

FIG. 4. In the right panel we plot the decay rate of the
oscillations of the magnetization η for distinct system sizes. In
the same plot we compare η with the eigenvalues with the greatest
real part—thus smallest absolute values for the real part—of the
Liouvillian. In the left panel we plot the Fourier transform of the
average magnetization (see lower panel in Fig. 1), highlighting
the oscillation frequencies of the dynamics. The peaks are
associated with the band separations in the imaginary part
discussed in Fig. 3. The inset of the left panel is the solution in
the thermodynamic limit where the oscillations persist indefinitely.

PHYSICAL REVIEW LETTERS 121, 035301 (2018)

035301-4



dissipative parts of the dynamics. Furthermore, the robust-
ness should be inherently linked to topological protection.
Finally a BTC, corresponding to a space-time ordering,

represents in essence a synchronized dynamics in a many-
body open quantum system. This hints at a very interesting
and deep connection between time crystals and quantum
synchronization. Lately there has been an intense effort to
characterize synchronization in the quantum realm (see,
e.g., the review [54]). BTCs may offer a different perspec-
tive on this problem.
Conclusions.—In this work we introduced boundary time

crystals. In the same spirit as in the original definition given in
Ref. [8], in the BTC phase the time-dependent order param-
eter appears only in a portion of the sample (at the boundary
for simplicity). The phenomenon is analogous to surface
critical phenomena. On looking at the reduced dynamics at
the boundary, one observes that BTCs are intimately linked to
the emergence of a periodic dynamics in some macroscopic
observable of an open quantummany-body system.A crucial
aspect of the whole picture is that the periodic motion should
appear only in the thermodynamic limit. We proposed an
example of a BTC phase in a solvable model where its
existence can be confirmed without resorting to any approxi-
mation.We finally discussed that BTCs can also emerge from
different mechanisms in topological systems.
The research data supporting this publication can be

found at [57].
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Note added.—While completing this manuscript, a few
works appeared [55,56] analyzing discrete time crystal
phenomena in periodically driven dissipative systems.
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