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We discuss a general procedure to construct an integrable real-time Trotterization of interacting lattice
models. As an illustrative example, we consider a spin-1=2 chain, with continuous time dynamics described
by the isotropic (XXX) Heisenberg Hamiltonian. For periodic boundary conditions, local conservation laws
are derived from an inhomogeneous transfer matrix, and a boost operator is constructed. In the continuous
time limit, these local charges reduce to the known integrals of motion of the Heisenberg chain. In a simple
Kraus representation, we also examine the nonequilibrium setting, where our integrable cellular automaton
is driven by stochastic processes at the boundaries. We show explicitly how an exact nonequilibrium
steady-state density matrix can be written in terms of a staggered matrix product ansatz, and we propose
quasilocal conservation laws for the model with periodic boundary conditions. This simple Trotterization
scheme, in particular in the open system framework, could prove to be a useful tool for experimental
simulations of the lattice models in terms of trapped ion and atom optics setups.
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Introduction.—Quantum integrable systems out of equi-
librium are a topic of intense current research, both theo-
retically and experimentally [1]. Universal relaxation
properties of integrable systems based on the hypothesis
of local equilibrium, given by the generalized Gibbs ensem-
ble (GGE) [2], depend crucially on the knowledge of local
and quasilocal charges of the system. Furthermore, the study
of the nonequilibrium quantum transport problem in inte-
grable systems has been fruitful in the context of the
boundary driven Lindblad equation [3], where the properties
of the nonequilibrium steady state can be connected to a
rigorous existence of ballistic transport at high temperatures.
However, all these concepts have, so far, been developed for
autonomous, time-independent systems, while much recent
interest also goes in the direction of periodically-driven
(Floquet) many-body systems, in particular in the connection
to topological phases [4] and Floquet time crystals [5,6].
A periodically time-dependent system can be naturally

viewed as a Trotter approximation of a one-dimensional
interacting, continuous time model, on which state-of-the-
art matrix product simulation methods are based [7]. This
Trotterized evolution is itself a discrete time dynamical
system—in fact, a reversible quantum cellular automaton
[8]. The quantum transfer matrix approach, proposed by
Klümper et al., [9–11], presents a way of generating Bethe-
ansatz integrable systems of this form and of improving the
efficiency of transfer-matrix renormalization group calcu-
lations [12]. Independently, this kind of integrable quantum
evolution has been used in lattice discretizations of con-
tinuous field theories, such as the famous sine-Gordon
model [13–15].
In this Letter, we discuss an integrable unitary circuit that

may be viewed as a Trotter formulation of some integrable

continuous Hamiltonian, or an integrable Floquet (periodi-
cally driven) quantum chain. We take the simplest and
perhaps physically most relevant example of the isotropic
Heisenberg spin-1=2 model, i.e., the XXX model. First we
define the dynamical system from the inhomogeneous
(staggered) transfer matrix. We then proceed to show
how two independent families of local conservation laws
can be constructed along with a boost operator. Next,
we present an integrable steady-state density matrix of a
boundary driven dissipative protocol, which is formulated
in terms of Krauss maps acting on the boundary spins. This
is the first time that an explicit solution of an interacting
discrete time quantum Markov chain has been presented.
Finally, we propose novel quasilocal conservation laws
of the model that could be used to describe generalized
thermalization.
Integrable Trotterization.—Consider a chain of N spins-

1=2. Instead of a continuous time evolution of the density
matrix given by the Liouville–von Neumann equation

i
dρt
dt

¼ ½H; ρt�; ð1Þ

and generated by a Hamiltonian H, we would like to
construct a discrete–time map

ρtþ1 ¼ Uρt U†; ð2Þ

with U being a unitary propagator, so that in the appropriate
limit, the original continuous dynamics (1) are recovered.
The propagator U should be expressed in terms of a finite
sequence of operators U acting locally on the spin chain.
Moreover, it should commute with some extensive family
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of local operators, fQkg, generated by a transfer matrix,
so that we can declare the model to be integrable. From a
mathematical point of view, the advantage of such
Trotterization would be that the return amplitudes
hψ jUnjψi could be interpreted as partition functions of
some vertex models, e.g., with domain wall boundary
conditions [16], for which a lot of computational tech-
niques have already been developed.
As an example, we consider a specific nontrivial SU(2)-

invariant spin-1=2 model, although the construction should
easily be generalizable to other Yang-Baxter integrable
models. For the local propagator U, acting on any two
neighboring spins of the chain, take the Ř matrix of the
XXX model [17],

Uj;jþ1 ¼ Řj;jþ1ðδÞ; ŘðλÞ ¼ 1þ iλP
1þ iλ

: ð3Þ

Indices denote the spins acted upon by the operator, while
P denotes a permutation. If we denote Pauli matrices by
σ ¼ ðσx; σy; σzÞ and the identity by 1, the latter can be
written as Pj;jþ1 ¼ 1

2
ð1þ σj · σjþ1Þ. Real parameter δ can

be interpreted as a spin coupling constant and is crucial in
recovering the continuous dynamics. The particular choice
of the normalization of Ř ensures unitarity. U, chosen in
this way, appears as one of the simplest unitary operations
on a pair of spins-1=2 one can think of—it swaps the spins
with a probability amplitude proportional to the coupling
parameter δ. It can be interpreted as an elementary
quantum gate.
Suppose now that N is an even integer. The full unitary

propagator acting on the whole chain of N spins-1=2 can be
defined as

U ¼ UevenUodd ¼
YN=2

j¼1

U2j−1;2j

YN=2

k¼1

U2k;2kþ1: ð4Þ

We have imposed periodic boundary conditions so that the
sites N þ 1 and 1 are equivalent. The full propagator U can
be interpreted as two-step discrete-time Floquet dynamics
or a quantum cellular automaton, see Fig. 1. The first step is
carried by the action of Uodd, which updates all even-odd
numbered spins, while in the same manner, the second step
Ueven updates spins on odd–even sites.
From the construction of U it is easy to realize that in

the infinitesimal coupling limit, δ ¼ −JΔt, with Δt ¼ t=n
and n being very large, we get U1;2 ∼ 1 − iΔt h12, where
h12 ¼ JP12 is the local Hamiltonian density of the XXX
spin-1=2 chain and

lim
n→∞

Un ¼ exp ð−itHÞ: ð5Þ

As expected, this is just the Trotter formula for the
Hamiltonian of the XXX spin-1=2 model

H ¼ J
2

XN

j¼1

ð1þ σj · σjþ1Þ: ð6Þ

A similar Trotterization scheme, using the quantum transfer
matrix method has been used for computing quantum
dynamics for a particular subset of initial states [18], or
to simplify computation of dynamical correlation functions
[11]. It also corresponds to the row-transfer matrix Floquet
integrability as defined in [19].
Since we have taken an Řmatrix for the local propagator

(3), the integrability of this Trotterization scheme is not
surprising. It stems from a family of inhomogeneous
(staggered) transfer operators TðλÞ that are in involution,
½TðλÞ; TðμÞ� ¼ 0, for all values of the spectral parameters λ
and μ. This involution is described in Appendix A of
the Supplemental Material [20]. The inhomogeneous trans-
fer operators act on the whole spin chain and can be
expressed as

TðλÞ ¼ tr0

� Y←

1≤j≤N
R0;j

�
λ − ð−1Þj δ

2

��
; ð7Þ

where we have denoted RðλÞ ¼ PŘðλÞ. The trace is taken
over the auxiliary space, which is a copy of a spin-1=2
space, used to facilitate the matrix-product formalism.
Elementary evaluation of the transfer operator at two
particular points, δ=2 and −δ=2, now yields the following
expression for the unitary propagator (4)

U ¼
�
T

�
−
δ

2

��
−1
T

�
δ

2

�
: ð8Þ

In particular, this implies the integrability of this model.

FIG. 1. Time evolution of the model. Each time step consists of
two half steps. In the first one, we apply gates U2j−2;2j−1, and in
the second one,U2j−1;2j. The protocol thus shifts for one site each
half step.
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In lattice discretizations of continuous field theories, see,
e.g., [13–15], the time evolution can generically be put into
such a perspective. One example is the sine-Gordon field
theory and its discretized version—the quantum Hirota
equation [13]. It is a Trotterization of the quantum Volterra
model [14]. The entire hierarchy of conservation laws,
which we are going to present now, can also be constructed
in that case [21].
Local integrals of motion.—The transfer operators (7)

generate local integrals of motion through the logarithmic
differentiation. Because of the inhomogeneity, we have
two families of such local conservation laws, given by
evaluating the logarithmic derivatives at the points δ=2 and
−δ=2, respectively,

Qþ
n ¼ dn

dλn
logTðλÞ

���
λ¼δ

2

; Q−
n ¼ dn

dλn
logTðλÞ

���
λ¼−δ

2

: ð9Þ

Conservation laws are invariant under the translation for
two lattice sites. Explicit computation shows that the local
terms of Q�

n act nontrivially on 2nþ 1 neighboring sites.
Terms of Q−

n are, however, shifted for one lattice site to the
right, with respect to those of Qþ

n . Explicitly, we can write,
for example,

Qþ
1 ¼

XN=2

n¼1

q½1;þ�
2n−2;2n−1;2n; Q−

1 ¼
XN=2

n¼1

q½1;−�2n−1;2n;2nþ1; ð10Þ

with the three-site local densities being

q½1;��
1;2;3 ¼

i
2ð1þ δ2Þ ½σ1 · σ2 þ σ2 · σ3 þ δ2σ1 · σ3 ∓
∓ δσ1 · ðσ2 × σ3Þ�: ð11Þ

We have subtracted the trivial terms proportional to the
identity. We have also computed the densities ofQ�

2 , which
are written in Appendix C of [20]. At this point we would
like to stress, that in the continuous–time limit, δ → 0, both
of the derivatives (9) become the same and converge to
the standard charges of XXX model [22]. In particular,
limδ→0Q�

1 ∝ H; i.e., the first pair of charges become the
Hamiltonian of the XXX model.
Both sets of conservation laws, Qþ

n and Q−
n , can now be

equipped with the boost operation—a ladder mapping that
transforms lower-order conservation laws into higher-order
ones and thus facilitates their computation. In our case, it
takes the form

½B;Q�
n � ¼ Q�

nþ1; ð12Þ

B ¼
XN=2

n¼1

�
n mod

N
2

�
R0

2n−3;2n−2j2n−1;2nð0Þ; ð13Þ

with B being the boost operator. In Eq. (13), f0ð0Þ denotes
the derivative with respect to λ at the point λ ¼ 0, while
R12j34ðλÞ ¼ Ř23ðλ − δÞŘ12ðλÞŘ34ðλÞŘ23ðλþ δÞ is the four-
point R matrix. The factor n has been considered modulo
N=2 due to periodic boundary conditions. The local terms
of the boost operator can also be explicitly written in terms
of three-site SU(2) invariant products of vectors of Pauli
matrices

R0
12j34ð0Þ ¼

i
2ð1þ δ2Þ ½σ1 · σ2 þ σ3 · σ4

þ 2σ2 · σ3 þ δ2σ2 · σ4 þ δ2σ1 · σ3

þ δσ1 · ðσ2 × σ3Þ − δσ2 · ðσ3 × σ4Þ�; ð14Þ

where the identity component has been subtracted as it does
not affect the boost procedure. Again note that, in the limit
δ → 0, the boost operator becomes the first moment of
the XXX model’s Hamiltonian, in accordance with [22].
For the derivation of the boost relation, which is similar as
in the case of a homogeneous transfer operator [22], see
Appendix B of [20].
Dissipative boundaries.—We now wish to study the

behavior of the model when a dissipative protocol is
performed at the boundaries. The goal is to write a discrete
time version of the Lindblad equation with local dissipators
located at the first and the last site of an open chain and to
find the steady state of the protocol that it defines. For
convenience, the lengthN of the chain is now taken to be an
odd integer. The dissipative boundaries can be modeled by
two pairs of Kraus operators

K0 ¼
1þ σz1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γL

p 1 − σz1
2

; K1 ¼
ffiffiffiffiffi
γL

p
σþ1 ð15Þ

for the left boundary, and

K̄0 ¼
1 − σzN

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γR

p 1þ σzN
2

; K̄1 ¼ ffiffiffiffiffi
γR

p
σ−N ð16Þ

for the right one. Note that, they satisfy the trace preser-
vation conditions,

P
1
j¼0K

†
jKj ¼ 1,

P
1
j¼0 K̄

†
j K̄j ¼ 1. We

write the dynamics of the density matrix as a two-step
discrete-time protocol

ρtþ1 ¼ M̂ρt; M̂ ¼ M̂oddM̂even; ð17Þ

where M̂even and M̂odd are two completely-positive maps
defined as
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M̂evenρ ¼
X1

j¼0

K̄jUevenρU
†
evenK̄

†
j

M̂oddρ ¼
X1

j¼0

KjUoddρU
†
oddK

†
j : ð18Þ

The unitary propagators Ueven and Uodd are defined sim-
ilarly as in the periodic case, but this time with additional
boundary magnetic fields, represented in terms of unitary
matrices B1 ¼ expðibLσz1Þ and B̄N ¼ expðibRσzNÞ,

Ueven ¼
Y½ðN−1Þ=2�

j¼1

U2j−1;2jB̄N;

Uodd ¼ B1

Y½ðN−1Þ=2�

j¼1

U2j;2jþ1: ð19Þ

Parameters bL and bR correspond to the strengths of
magnetic fields at the left and the right edges of the chain,
respectively. This process has a very natural interpretation
in terms of a repeated interaction protocol [23,24] where,
periodically, in each half time step, the left-most (right-
most) spin is brought into interaction with a fresh up
(down) polarized spin (see Appendix D of [20] for an
explicit description). As such, the protocol probably has a
more straightforward experimental implementation than
the corresponding boundary driven Lindblad equation
[3,25,26], which is obtained in the continuum limit δ → 0.
As is shown in Appendix E of [20], the stationary

problem ρ∞ ¼ M̂ρ∞ can be solved exactly for the sta-
tionary state ρ∞. We will see that the structure of the
stationary state remarkably resembles that of the inhomo-
geneous transfer matrix introduced in the previous section.
Let us state the ansatz and the result. The stationary state is
searched for in the Cholesky form as

ρ∞ ¼ Ω†Ω
trðΩ†ΩÞ ; ð20Þ

where Ω is a triangular matrix built in an inhomogeneous
(staggered) matrix–product form

Ω ¼ D⊗Nh0jLa;1ðλ; sÞLa;2ðλ − δ; sÞ � � �
× La;N−1ðλ − δ; sÞLa;Nðλ; sÞj0i: ð21Þ

By D, we have denoted a diagonal matrix that acts on the
spin-1=2 space and depends on some arbitrary real param-
eter χ, while Lðλ; sÞ is the well known Lax matrix of the
isotropic spin-1=2 Heisenberg model,

D ¼ χ
1
4
σz ; Lðλ; sÞ ¼

�
iλþ Sz S−

Sþ iλ − Sz

�
: ð22Þ

In the matrix-product expression (21), Lax matrices are
equipped with two indices. The second index denotes the
position of the spin in the chain, upon which Lðλ; sÞ acts,
while the letter a denotes the auxiliary space. The latter is
now an infinite-dimensional space with basis fjkig∞k¼0,
upon which operators Sz and S� act. These operators satisfy
sl2 algebraic relations ½Sz; S�� ¼ �S� and ½Sþ; S−� ¼ 2Sz

and can take the following explicit form

Sz ¼
X∞

k¼0

ðs − kÞjkihkj

Sþ ¼
X∞

k¼0

ðkþ 1Þjkihkþ 1j

S− ¼
X∞

k¼0

ð2s − kÞjkþ 1ihkj: ð23Þ

For s being an integer or a half integer, we recover the
standard 2sþ 1 dimensional unitary spin-s representation
from these relations. However, in our case, s and the other
two parameters, λ and χ, are complex and real numbers set
by the boundary conditions,

λ ¼ δ

2

�
1

1 − e−2ibR
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γR

p −
e2ibL

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γL

p
1 − e2ibL

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γL

p
�

s ¼ iδ
2

�
1

1 − e−2ibR
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γR

p þ e2ibL
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γL

p
1 − e2ibL

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γL

p
�

χ ¼ γL
γR

2½1 − cosð2bRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γR

p � − γR
2½1 − cosð2bLÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γL

p � − γL
: ð24Þ

For the derivation of this exact solution, see Appendix E
of [20].
Note that, the stationary state shares a lot of common

features with the solution of the similar continuous-time
model, i.e., the Lindblad-driven XXX spin-1=2 chain (the
most general one presented in the review [3]). An important
difference to our discrete-time case is the introduction of
the inhomogeneous (staggered) structure of the matrix–
product ansatz. This is needed in order to deal with the
two-step discrete-time dynamics. A conceptually similar
procedure is used to write the steady state and Markov
eigenvectors of the classical, boundary driven Bobenko
cellular automaton—see [27].
Quasilocal charges and Floquet GGE.—Following

the procedure outlined in [28,29], we can now propose a
family of quasilocal conservation laws for our discrete-
time model with periodic boundary conditions. Take
t ∈ R and let the auxiliary space correspond to a 2sþ 1

dimensional spin s ∈ 1
2
Z representation (23). One can

generalize the transfer operator (7) as TsðλÞ ¼
trað

Q
←
1≤j≤N La;j½λ − ð−1Þjðδ=2Þ; s�Þ. Integrability dictates

½TðλÞ; TsðλÞ� ¼ 0 and
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XsðtÞ ¼
Tsðt − i

2
ÞT 0

sðtþ i
2
Þ

½τsðt − δ
2
Þτsðtþ δ

2
Þ�N=2 ; ð25Þ

with τsðtÞ ¼ −t2 − ðsþ 1
2
Þ2, are the quasilocal conservation

laws. For the details, see Appendix F in [20]. We conjecture
that XsðtÞ form a complete set of quasilocal charges and
describe a Floquet generalized Gibbs ensemble (see, e.g.,
[30,31] for the analogous concept for free systems), which
should fully describe relaxation after a quantum quench in
analogy to [32].
Conclusion.—We have discussed a method of construct-

ing an integrable real-time Trotterization scheme of interact-
ing lattice models, with both the time evolution and the local
conservation laws generated by an inhomogeneous transfer
matrix. The discussion related to the hierarchy of local
conservation laws can be understood in a wider context—it
relies solely on the existence of a unitary solutionRðλÞ of the
Yang-Baxter equation, which generates the cellular automa-
ton through the inhomogeneous transfer matrix.
The time evolution of our system is a sequence of

local quantum gates and can be understood either as a
Floquet driven system or a quantum cellular automaton. As
a particular example, we have studied, in detail, a
Trotterized XXX spin-1=2 model. For the periodic lattice,
we have considered local, as well as quasi-local, integrals
of motion and derived the boost operator for the inhomo-
geneous transfer operator. In the continuous time limit,
these conservation laws become those of the XXX model.
Apart from that, we have exactly solved a steady state of a
boundary driven problem, which is described by the
Trotterization scheme in the bulk, while being coupled
with a pair of spin reservoirs at the boundaries.
From the point of view of a field theorist, these results

provide a method to treat dissipative boundary conditions
in a light-cone discretization, while for an experimentalist,
the described discrete-time quantum protocol could
become a simple paradigm of a spin chain simulator
realized by subsequent application of SWAP-like quantum
gates, corresponding to the local propagator and additional
boundary dissipative processes [33,34].
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