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Boson sampling devices are a prime candidate for exhibiting quantum supremacy, yet their application
for solving problems of practical interest is less well understood. Here we show that Gaussian boson
sampling (GBS) can be used for dense subgraph identification. Focusing on the NP-hard densest
k-subgraph problem, we find that stochastic algorithms are enhanced through GBS, which selects dense
subgraphs with high probability. These findings rely on a link between graph density and the number of
perfect matchings—enumerated by the Hafnian—which is the relevant quantity determining sampling
probabilities in GBS. We test our findings by constructing GBS-enhanced versions of the random search
and simulated annealing algorithms and apply them through numerical simulations of GBS to identify the
densest subgraph of a 30 vertex graph.
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Quantum algorithms are often designed with the
assumption that they can access the full power of universal
quantum computation. However, presently developing
quantum devices have limited resource capabilities and
are not fault tolerant. Their emergence has motivated a
reexamination of methods for designing quantum algo-
rithms, with the focus now on harnessing the computational
power of small-scale, noisy quantum computers. Candidate
algorithms for near-term devices include quantum simu-
lators for many-body physics [1,2], variational algorithms
[3–6], quantum approximate optimization algorithms [7,8],
and machine learning on hybrid devices [9–13].
Boson sampling is a limited model of quantum compu-

tation given by passing photons through a linear interfer-
ometer and observing their output configurations [14].
Significant efforts have been performed to implement
boson sampling [15–18], leading to the proposal of related
models such as scattershot boson sampling [19–21] and
Gaussian boson sampling [22,23] that are more suitable for
experimental realizations. Moreover, boson sampling devi-
ces are, in principle, capable of performing tasks that
cannot be efficiently simulated on classical computers, a
feature that has made them a leading candidate for
challenging the extended Church-Turing thesis. In fact,
the primary objective of implementing boson sampling has
so far been to demonstrate quantum supremacy, leaving the
real-world application of such devices underdeveloped. A
notable exception is the use of Gaussian boson sampling for
efficiently calculating the vibronic spectra of molecules,
[24–26], which provided the first clue of the usefulness of
this platform.
In this work, we show that Gaussian boson sampling

(GBS) can be used to enhance classical stochastic algo-
rithms for the densest k-subgraph (DkS) problem. The DkS
problem is NP-Hard [27] and defined through the following

optimization task: given a graph G with n vertices, find the
subgraph of k < n vertices with the largest density. Among
subgraphs with a fixed number of vertices, the density and
the number of edges are equivalent quantities, and we
hence refer to both interchangeably throughout this Letter.
Beyond its fundamental interest in mathematics and theo-
retical computer science, the DkS problem has a natural
connection to clustering problems with the goal of finding
highly correlated subsets of data. Clustering has applica-
tions in a wide range of fields such as data mining [28–31],
bioinformatics [32,33], and finance [34].
Our approach uses a technique from Ref. [35] to encode

a graph into the GBS paradigm. Here, the probability of
observing a given photon configuration is proportional to
the number of perfect matchings of the corresponding
subgraph. We highlight a correspondence between the
number of perfect matchings in a subgraph and its density,
meaning that a suitably programmed GBS device will
prefer to output dense subgraph configurations. Following
results in a companion paper [36], we see that this is a form
of proportional sampling that can be used to enhance the
stochastic element of classical optimization heuristics for
the DkS problem. Since no polynomial-time approximation
schemes are believed to exist for the DkS problem [37],
certain worst-case instances requiring superpolynomial
run-time may be best tackled using stochastic algorithms.
Our findings are illustrated for a fixed graph, where we
introduce GBS-enhanced hybridizations of random search
and simulated annealing algorithms. This approach high-
lights a general principle of using output samples from a
GBS device to enhance approximate solutions to optimi-
zation problems.
Applying GBS to the DkS problem.—The important

concepts of GBS are first briefly reviewed. In GBS, photon-
number detection is performed on a multimode Gaussian
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state [22,23,38]. For an n-mode system, we denote the
possible outputs of GBS by vectors S ¼ ðs1; s2;…; snÞ,
where si is the number of photons detected in output mode
i. It was shown in Ref. [22] that the probability of observing
an output pattern S is

PðSÞ ¼ jσQj−1
2

HafðASÞ
s1!s2! � � � sn!

; ð1Þ

where σQ ¼ σ þ 12n=2, σ is the (2n × 2n)-dimensional
covariance matrix of the n-mode Gaussian state, and AS

is a submatrix of A ¼ ð 01n
1n
0
Þ½12n − σ−1Q � fixed by S. The

function HafðASÞ is the Hafnian of AS [39].
Following Ref. [35], given the adjacency matrix A of an

n vertex graph G, we set A ≔ cðA ⊕ AÞ, where c < λ−1

and λ is the largest eigenvalue of A. The resulting
covariance matrix is such that its corresponding
Gaussian state is pure and can hence be prepared by
injecting single-mode squeezed states into a linear optics
interferometer [38]. We focus on post-selecting output
samples from GBS such that si ∈ f0; 1g and

P
isi ¼ k

for a fixed even k, i.e., the set of samples with even-k
photons and where no output mode has more than one
photon detected—referred to here as the k collision-free
subspace. The probability of getting such an event from
GBS is pkcf ≔ pðk ∧ cfÞ ¼ pðcfjkÞpðkÞ, where pðcfjkÞ is
the collision-free probability given k photons and pðkÞ is
the probability of k photons. Here, pðcfjkÞ is fixed by the
size of k in comparison to n, and is expected to be close to
unity for k ≪ n. On the other hand, pðkÞ is controlled by
the amount of input squeezing and can be maximized by the
user through the choice of c.
By postselecting on the k collision-free subspace, the

probability of a valid output pattern S is

PkcfðSÞ ¼ jσQj−1
2
c2jHafðASÞj2

pkcf
; ð2Þ

where AS is the adjacency matrix corresponding to the
subgraph of A selected by S. Crucially, the Hafnian of an
adjacency matrix is equal to the number of perfect match-
ings in the corresponding graph, i.e., the number of
independent sets of edges in which every vertex of the
graph is connected to exactly one edge [39]. Equation (2)
hence highlights a remarkable feature: the greater the
number of perfect matchings in a subgraph, the more
likely its corresponding sample is to be outputted
through GBS.
Our next step is to highlight a correspondence between

the number of perfect matchings in a graph and its density.
Intuitively, a graph with many perfect matchings is
expected to contain many edges. This intuition was made
quantitative in Ref. [40], where it was shown that the
number of perfect matchings in a graph G with 2m vertices
is upper bounded by a monotonically increasing function of
the number of edges l, i.e.,

PMðGÞ ≤
��

l
n

�

!

�½ðm−αÞ=bðl=mÞc��� l
m

�

!

�½ðαÞ=bðl=mÞc�
; ð3Þ

where α ≔ l −mbðl=mÞc. Thus, given the number of
perfect matchings in a graph with k ≔ 2m vertices,
Eq. (3) provides a lower bound to the number of edges
in the graph. Figure 1 illustrates the close relationship
between the number of perfect matchings and edges of
random graphs, highlighting the usefulness of the above
bound. This relationship provides a crucial insight: when
sampling from the GBS distribution of Eq. (2), the sub-
graphs that are most likely to appear have high density.
Hence, by programming a GBS device appropriately, it is

possible to sample from a distribution that naturally favors
dense subgraphs. This is an example of proportional
sampling, as described in Ref. [36]. In fact, as can be seen
in Fig. 1, theHafnians of dense graphs can bemany orders of
magnitude larger than the Hafnians of sparser graphs. For
example, the Hafnian of a complete graph of k vertices is
equal to ðk − 1Þ!!. Through proportional sampling, this
means that the probability of finding dense graphs is
augmented by a correspondingly large factor. Conversely,
graphs with few edges will have either zero or negligible
Hafnians, and will therefore almost never be sampled. The
combined effect of these features is a GBS distribution that
ignores sparse graphs and gives us a much improved chance
of discovering the dense ones.
Proportional sampling leads to a simple algorithm for

approximately solving the DkS problem for even k:
generate many samples from GBS with A ¼ cðA ⊕ AÞ
and pick the subgraph with the largest density. For odd k,
one can output kþ 1 vertex subgraphs and remove the
vertex with the lowest degree. This amounts to an enhanced
random search algorithm. However, it is often of interest to

FIG. 1. Relationship between the number of perfect matchings
and the number of edges for randomgraphs of k ¼ 16 vertices. The
random graphs are generated by adding each possible edge with
probability p. We generate samples for each value of p ¼ 0.1;
0.2;…; 1 for a total of approximately 6000 random graphs, and
plot their number of edges against the Hafnian of the adjacency
matrix. The dashed line is the lower bound from Eq. (3).
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use more advanced stochastic algorithms that also harness
the local structure of an optimization landscape to improve
beyond random search. We discuss in the following how
simulated annealing can be enhanced for solving the DkS
problem by using randomness from GBS.
Before doing so, we motivate the use of a physical GBS

device for proportional sampling according to Eq. (2).
Indeed, since the Hafnian of an adjacency matrix can be
classically approximated in polynomial time [41], there
exist polynomial-time classical approaches for approximate
GBS, such as using rejection sampling or metropolized
independent sampling [42,43]. A physical GBS device, on
the other hand, requires constant time to output a sample,
leading to a polynomial advantage over these classical
methods. Moreover, GBS devices can, in principle, have
very fast sample rates, limited primarily by detector dead
times. We also emphasize the inherent robustness of our
approach to noise and imperfections in the device, which
may typically degrade the intrinsic bias of GBS but not
eliminate it completely.
Enhancing stochastic algorithms through GBS.—There

is a varied collection of classical algorithms for finding
dense subgraphs, see for example Ref. [44] for a survey.
Among these are randomized and deterministic algo-
rithms, each suitable for specific scenarios. Determinstic
greedy algorithms can efficiently find subgraphs of large
density, but they can be fooled by graphs with special
structure. For instance, a widely used algorithm of
Charikar [45] relies on iteratively eliminating vertices
with the lowest degree, but it is incapable of detecting
isolated dense subgraphs. On the other hand, the random-
ness in stochastic algorithms allows them to avoid being
fooled by special graph structure, making them a natural
choice when little is known about the graph under
consideration. In terms of computational complexity, no
polynomial-time approximation scheme exists for solving
the DkS problem to constant multiplicative error [37]
unless the exponential time hypothesis is false. This means
that classes of graphs exist where all known polynomial-
time algorithms fail, in which case stochastic algorithms
may possibly be preferable.
We show how GBS can be used to enhance stochastic

algorithms. These algorithms combine exploration of the
problem space with exploitation of local structure.
Exploration can be achieved by randomly searching
through the space, while exploitation involves tweaking
candidate solutions and checking for an improvement. For
graph problems, tweaking can be an operation where a
candidate subgraph is modified by replacing a random
subset of its vertices with other randomly chosen vertices.
Classical algorithms employ uniform randomness for
exploration and exploitation. However, following
Ref. [36], we can use biased randomness from GBS to
enhance stochastic algorithms for the DkS problem.
Crucially, this improvement is not algorithm specific and

works for any method using exploration and exploitation,
regardless of inner details of the routine.
To enhance exploration, one simply samples from the

GBS distribution of Eq. (2), as formalized by the routine
GBS-Explore in Ref. [36]. For exploitation, we can
improve the tweak stage by using GBS to randomly select
which vertices of candidate subgraphs to remove and also
which ones to replace them with. More precisely, for a
subgraph of even k vertices with adjacency matrix AS, we
perform the following routine GBS-Tweak for a fixed
even l < k denoting the minimum number of vertices to be
left untweaked: (1) Generate R as an l vertex subgraph of S
with adjacency matrix AS;R according to the GBS distri-
bution Plcf ∼ jHafðAS;RÞj2. Extend R by picking a uniform
random number m ∈ f0; 1;…; k − l − 1g of the vertices
remaining from S, along with the corresponding edges.
This is the subgraph AS;keep that specifies the lþm vertices
to be kept. (2) Generate T as a k − l vertex subgraph of A
with adjacency matrix AT according to the GBS distribu-
tion Pðk−lÞcf ∼ jHafðATÞj2. Reduce T by randomly rejecting
m of its vertices and corresponding edges. This is the
subgraph AT;replace that specifies the k − l −m vertices that
will be added to AS;keep. If AS;keep and AT;replace share any
vertices, repeat this step. (3) Output the k vertex subgraph
AS;keep⋃AT;replace. GBS allows tweaking itself to become
exploitative, with a twofold improvement: since R and T
are likely to be dense subgraphs, their composition should
also be dense. We introduce the random parameter m to
vary the number of tweaked vertices.
GBS enhanced exploration and exploitation can be used

within stochastic algorithms. Since random search only
uses exploration, we discuss another example here.
Simulated annealing is a heuristic optimization algorithm
that combines elements of random search and hill climbing
[46]. Whenever a new subgraph is generated, if its density
is larger than the current one, it is retained. If its density is
smaller, the new submatrix can still be retained with a
probability that depends on the difference between the
densities and a temperature parameter. The temperature is
initially high and new subgraphs are often accepted, even if
they have lower density. This is a feature that can prevent
the search from becoming stuck in local minima. As the
algorithm progresses, the temperature is lowered and only
denser submatrices are kept, leading to an effective hill-
climbing behavior. This algorithm is detailed in pseudo-
code in the Supplemental Material [47].
Example DkS problem.—To illustrate the enhancement

to stochastic algorithms provided by GBS, we apply GBS
enhanced random search and simulated annealing to the
problem of locating a planted subgraph with large density,
but whose vertices have low degree compared to the rest of
the graph, see Fig. 3. Such low-degree planted graphs are,
by construction, hard to find for deterministic algorithms
based on vertex degree. These graphs can model the
presence of tightly knit but otherwise isolated communities
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in social networks: members of these communities are
highly connected to each other (large density) but have few
connections in total compared to typical members of the
broader network (low degree). Note that more advanced
deterministic algorithms can be designed to solve the DkS
problem for this family of graphs [48].
To access GBS samples, we use the Hafnian formula of

Ref. [49] to perform a brute force simulation of the entire
probability distribution, which limits the size of graphs that
we can sample from. Our graph was fixed to 30 vertices with
a planted subgraph of 10 vertices. Thegraphwas constructed
by (i) generating a random graph of 20 vertices with
probabilityp ¼ 0.5 of adding an edge, (ii) creating a random
subgraph of 10 verticeswith probabilityq ¼ 0.875 of having
an edge, and (iii) selecting 8 vertices at random in both

graphs and adding an edge between them. The result is
shown in Fig. 3, with the adjacency matrix available as
SupplementalMaterial [47].Here, the planted vertices have a
lower average degree than other vertices, leading to a planted
graph that is invisible to algorithms based on vertex degree.
Figure 2 illustrates the performance of random search

and simulated annealing. The plots each show the results of
using GBS and uniform sampling in explore and exploit
stages. The results are averaged over 400 repetitions to
remove statistical fluctuations, with the standard deviation
also included. The simulated annealing parameters are
T¼0.01, with a linear cooling schedule, and l ¼ 6. Here
it is relevant to compare both the performance of simulated
annealing over random search and the performance of using
GBS over uniform sampling. It is first clear to see that GBS
provides an advantage in both cases, illustrating our general
findings that GBS is an enhancement for stochastic
optimization algorithms. Furthermore, we see that simu-
lated annealing is typically superior to random sampling
and extends earlier beyond the region accessible by the
deterministic algorithm of Ref. [45] (32 edges). Note,
however, that GBS random search is particularly successful
in the low sample number regime, outperforming both
uniform and GBS simulated annealing for less than 50
samples. This is a remarkable observation given the
simplicity of GBS random search.
Discussion.—We have shown that Gaussian boson

sampling (GBS) is a useful tool for finding dense sub-
graphs. This results from the capability of GBS to perform
proportional sampling for the canonical problem known as
Max-Haf, highlighted in Ref. [36], as well as the link
between the number of perfect matchings (given by the
Hafnian) and the density of a graph. This allows for tailored
stochastic algorithms to be constructed for finding approxi-
mate solutions to the densest k-subgraph (DkS) problem.

FIG. 2. Performance of random search (left) and simulated annealing (right) algorithms for finding the densest subgraph of 10 vertices
in the graph of Fig. 3. The top red curve corresponds to using GBS exploration and (for simulated annealing) GBS tweaking, while the
bottom grey curve corresponds to the uniform random counterparts. The solid curves are the averages over 400 repetitions and the error
bars represent one standard deviation. The straight horizontal line shows the number of edges, 34, in the dense subgraph found by the
algorithm of Ref. [45]. The densest subgraph has 42 edges.

FIG. 3. A random graph of 30 vertices with a planted dense
subgraph of 10 vertices (highlighted in red with thick edges) [47].
Vertices in the planted subgraph have lower degree than most
other vertices in the graph, yet the density of the planted subgraph
is the highest. This property prevents degree-based deterministic
algorithms from finding the planted subgraph.
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It is important to emphasize that in the context of
optimization, GBS is best understood as a quantum
enhancement of stochastic algorithms. Although accurate
deterministic algorithms exist, they can always be fooled
under certain circumstances. Indeed, the DkS problem is
NP-Hard and there are difficult instances for which no
polynomial-time approximation algorithms exist, assuming
the exponential time hypothesis [37]. This highlights a
situation where stochastic algorithms, and their enhance-
ment through GBS, are expected to be useful. Note that
well-performing deterministic algorithms may also be
enhanced through GBS by designing randomized versions.
These findings move away from the traditional approach

to constructing quantum algorithms of rigorously showing
a speedup in comparison to the best known classical
algorithms. The heuristics-based approach followed here
can instead allow for quantum enhancements to be iden-
tified in near-term devices. Overall, further research is
needed to fully understand the potential advantages of
enhancing stochastic algorithms through GBS when com-
pared to highly optimized classical deterministic algorithms
for dense subgraph identification and approximate opti-
mization in general.
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