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We demonstrate a density-dependent gauge field, induced by atomic interactions, for quantum gases.
The gauge field results from the synchronous coupling between the interactions and micromotion of the
atoms in a modulated two-dimensional optical lattice. As a first step, we show that a coherent shaking of the
lattice in two directions can couple the momentum and interactions of atoms and break the fourfold
symmetry of the lattice. We then create a full interaction-induced gauge field by modulating the interaction
strength in synchrony with the lattice shaking. When a condensate is loaded into this shaken lattice, the
gauge field acts to preferentially prepare the system in different quasimomentum ground states depending
on the modulation phase. We envision that these interaction-induced fields, created by fine control of
micromotion, will provide a stepping stone to model new quantum phenomena within and beyond
condensed matter physics.
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Synthesizing gauge fields for cold atoms opens the door
to investigate novel quantum phenomena associated with
charged particles in an electromagnetic field [1,2]; exam-
ples include quantum Hall effects, topological matter, and
anyonic excitations. Many experimental approaches have
been developed in the past years to introduce gauge fields,
including rapidly rotating gases [3–5], Raman transitions
[6,7], laser-assisted tunneling [8,9], and lattice shaking
[10,11].
As charged particles in motion also generate electro-

magnetic fields, a complete simulation of the particle-field
system should include the feedback of the matter to the
gauge field [12]. Such a dynamical gauge field would
enable simulation of important models in condensed
matter [13–15] and in high energy physics, as in Yang-
Mills theories [16]. Many mechanisms have been pro-
posed for introducing dynamical gauge fields in quantum
gases [17–22], opening exciting directions for cold atom
research.
On the way to dynamical fields, there is a great deal of

interest in generating density-dependent (equivalently,
interaction-induced) gauge fields in which the effective
field depends on the arrangement of atoms [2]. For
example, such a field can be used to study new phase
transitions [23,24] and one-dimensional particles with
anyonic statistics [23,25–27]. Proposals have suggested
generating density-dependent gauge fields using light-
matter interactions [28,29], lattice modulation [23,25–27],
or interaction strength modulation [24]. Experimental
realization, however, remains elusive.
Lattice shaking has recently emerged as a promising

experimental tool for generating gauge potentials in cold

atom systems [30], enabling exciting developments includ-
ing topological bands [31–33]. In our recent work, lattice
modulation at a frequency near-detuned to an interband
transition induces a quantum phase transition in Bose-
Einstein condensates, resulting in domain formation [11],
roton excitations [34], and critical dynamics that are both
universal [35] and coherent [36]. In this lattice shaking
scheme, the superfluid remains long lived and the atomic
interactions play an important role to establish the ordering
of superfluid domains.
In this Letter, we experimentally demonstrate an inter-

action-induced synthetic gauge potential in a Bose-Einstein
condensate. The gauge potential AðρÞ appears as the
substitution,

q → q −AðρÞ=ℏ ð1Þ

in the Hamiltonian, linking its dependence on the momen-
tum, represented by the wave vector q ¼ ðqx; qyÞ, with ρ,
the density coarse grained over one unit cell. Equivalently,
one can view the interaction-induced field in a tight-binding
model as an imaginary part of the tunneling that depends on
the occupation number operators N̂k and N̂kþ1 of the tunnel
coupled sites,

J → J þ iJ0ðN̂k þ N̂kþ1Þ; ð2Þ

where J is the tunneling energy without the field and J0
encodes the strength of the density-dependent field [37].
To create this density-dependent gauge field we exploit

the micromotion of atoms in a shaken 2D square optical

PHYSICAL REVIEW LETTERS 121, 030402 (2018)

0031-9007=18=121(3)=030402(6) 030402-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.030402&domain=pdf&date_stamp=2018-07-18
https://doi.org/10.1103/PhysRevLett.121.030402
https://doi.org/10.1103/PhysRevLett.121.030402
https://doi.org/10.1103/PhysRevLett.121.030402
https://doi.org/10.1103/PhysRevLett.121.030402


lattice in combination with a periodically modulated
interaction strength. For atoms condensed in a two-dimen-
sional momentum state q, this combination yields a mean-
field energy shift,

Eq ¼ ηqρg0; ð3Þ

where g0 ¼ gðtÞ is the period average of the interaction
strength gðtÞ ¼ 4πℏ2aðtÞ=m, aðtÞ is the scattering length,
m is the atomic mass, and 2πℏ is Planck’s constant. The
dimensionless interaction factor ηq accounts for the cou-
pling between the micromotion and atomic interactions, as
detailed below. A gauge potential in the form of Eq. (1)
requires ηq to be linear in q.
We perform the experiment in two stages. In the first stage

we show the effect of micromotion on interactions by tuning
the relative phase θs between the lattice shaking in the x and
y directions while keeping the scattering length stationary.
The micromotion raises the time-averaged interaction energy
along the direction of shaking and can break the fourfold
symmetry of the dispersion. In the second stage we generate
a density-dependent gauge field by modulating the scattering
length with a phase θg relative to the lattice shaking. This
scheme creates a gauge field with A ∼ eΘρg0, where eΘ is a
unit vector in the directionΘ≡ θg − θs=2. In both stages we
test for the predicted effects via their influence on the phase
transition in the shaken lattice.
Our experiments utilize disk-shaped Bose-Einstein con-

densates of cesium atoms prepared in a 2D, square optical
lattice. The lattice depths along both directions are equal
and small enough to maintain superfluidity of the gas. The

lattice can then be shaken with identical peak-to-peak
amplitudes s and angular frequencies ω along both axes,
see Fig. 1(a). The shaking frequency is chosen to be slightly
higher than the excitation gap at zero momentum in the
lattice [11]. See Supplemental Material for details [37].
When the shaking amplitude s exceeds a critical value sc,

the single particle dispersion Ekin develops four minima at
momenta q ¼ ð�q�;�q�Þ and ð�q�;∓ q�Þ, where q� is
controlled by s, see Fig. 1(b). We calculate the effective
dispersion of this periodically modulated system using
Floquet theory [37]. The fourfold degeneracy is the result
of the D4 symmetry of the lattice, a 2D generalization of
previous experiments in one dimension [11,34–36]. Similar
to the 1D system, the change in dispersion induces a phase
transition in which the condensate segregates into domains,

FIG. 1. Atoms in a two-dimensional shaken lattice. (a) A 2D
square lattice (orange surface) is shaken by inducing periodic
displacements δx and δy along the x and y axes, respectively,
(arrows) with equal amplitude s at frequency ω≡ 2π=τ, shaking
period τ, and relative phase θs. (b) Shaking above the critical
amplitude s > sc results in a single particle dispersion with four
degenerate minima in the ground band at q ¼ ðþq�;þq�Þ,
ð−q�;þq�Þ, ð−q�;−q�Þ, and ðþq�;−q�Þ, denoted, respectively,
by red, black, blue, and white dots. (c) The shaking phase θs
controls the polarization of the lattice displacement. The polari-
zation does not affect the single particle dispersion shown in (b).

FIG. 2. Interaction-momentum coupling due to micromotion.
(a) Examples of micromotion for linear shaking (θs ¼ 0°).
Snapshots of the density jψqðx; y; tÞj2 within a single 2D lattice
site are shown for two states, ðþq�;þq�Þ (red) and ð−q�;þq�Þ
(black), within a shaking period τ. (b) As a result of the
micromotion, the mean microscopic density hnqðtÞi oscillates
and reaches a maximum when the wave function is most
localized, and a minimum when it is most delocalized. Each
curve is colored as in Fig. 1(b); note that the density oscillations
of the white state are identical to the plotted black curve. Dashed
lines show the averaged densities. (c) Maps of the interaction
factor ηq, equal to the time-averaged microscopic density (see
text), for different polarizations. The colored dots mark the
ground states after accounting for the interaction factor. Note
that circular polarization retains the D4 symmetry of the single
particle dispersion.
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each containing atoms occupying one of the four minima.
Since the single particle Hamiltonian is separable along
the lattice axes, the kinetic energy is independent of the
shaking polarization θs, defined as the relative phase
between the two shaking lattices, see Fig. 1(c).
We first explore the intriguing interplay between micro-

motion and interactions. Examples of the micromotion,
the back-and-forth oscillation of the atomic wave function
during one period τ of the lattice shaking, are shown in
Fig. 2(a). Since the atomic density depends on the wave
function spread in both x and y directions, interactions
effectively couple the motion in the two directions and
destroy the separability of the system. In particular, the
micromotion creates a microscopic density enhancement
factor hnqðtÞi¼d2

R
d
0

R
d
0 dxdyjψqðx;y;tÞj4, where ψqðx; y; tÞ

is the (unit-normalized) Floquet steady state wave func-
tion and the angle brackets denote the expectation value
[37]. The enhancement factor characterizes the ratio of
the average density in a lattice site to the coarse-grained
density ρ. This enhancement factor oscillates at the
shaking frequency and can differ between the four kinetic
energy minima, as shown in Fig. 2(b). In this example, the
wave function expands and contracts along the x and y axes
in phase for momenta along the lattice shaking direction,
leading to strong oscillations in density. In contrast, the
wave functions along the x and y axes oscillate out of phase
for states with momentum perpendicular to the axis of
lattice motion, reducing the density oscillation. For circular
shaking the wave functions oscillate 90° out of phase for all
four momentum states, causing all four to have the same
amplitude of density oscillation and therefore the same
interaction energy.
Since the typical dynamics of the condensate, including

the formation of domains after the phase transition, occur
on timescales spanning many shaking periods, they are
predominantly sensitive to the interaction energy, Eq ¼
ρgðtÞhnqðtÞi, where the bar denotes time averaging over
one shaking period. Therefore, we define the interaction
factor,

ηq ¼ 1

g0
gðtÞhnqðtÞi; ð4Þ

which accounts for the interplay between the interaction
strength and the micromotion; see Eq. (3).
In the first stage of our experiments, with static inter-

actions gðtÞ ¼ g0, we control the interaction-momentum
coupling by tuning the shaking polarization, as shown in
Fig. 2(c). To leading order in q=qL the interaction factor is

ηq ¼ αþ βs2 cos θsqxqy; ð5Þ
where α and β are dimensionless constants that depend on
the shaken lattice parameters [37]. The strength of this
effect is greatest for linear shaking (θs ¼ 0° or 180°), with
which the momentum states along the axis of lattice

motion experience much stronger density modulation,
leading to a higher interaction factor than the momentum
states perpendicular to the axis of lattice motion (hereafter
“off-diagonal states”), whose density is more constant
over time. This effect causes domains to form preferen-
tially in the off-diagonal states.
We test for the presence of interaction-momentum

coupling by driving condensates across the phase transition
with different shaking phases θs and measuring the result-
ing quasimomentum distribution. After loading the con-
densate into the lattice, we linearly ramp up the shaking
amplitude, exceeding the critical amplitude and thus driv-
ing the condensate across the phase transition. After a brief
time of flight we measure the density distributions niðrÞ of
atoms occupying the quasimomentum state in the ith
quadrant; for example, n1 is the density in the (þq�, þq�)
state. Finally, we calculate the pseudospin density along

FIG. 3. Observed coupling of interaction and momentum.
(a) Example, reconstructed domain structures (see text) repre-
senting the density profiles of atoms in each well, measured after
crossing the phase transition with the shaking polarizations
indicated on each image. The dashed circles guide the eye to
the region containing the condensate. The correspondence
between color and pseudospin density (see text) is shown in
the upper-right corner of panel (b). (b) The imbalanceD (see text)
of the atomic populations between the two quasimomentum
diagonals characterizes the anisotropy which results from the
quasimomentum-dependent interactions for different polariza-
tions. The solid curve is a sinusoidal fit. The orange, dashed curve
shows the expected imbalance in the absolute ground state; the
star emphasizes that the expected imbalance is D ¼ 0 for circular
shaking (θs ¼ 90°).
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each lattice axis, jx ¼ n1 þ n4 − n2 − n3 and jy ¼ n1 þ
n2 − n3 − n4. See Supplemental Material for details [37].
Typical reconstructed domain images for various shaking

polarizations are shown in Fig. 3(a). To better quantify the
biasing of the domains toward particular wells for ensembles
of many images, we introduce an imbalance factor D ¼
ðN2 þ N4 − N1 − N3Þ=Ntot, where Ni is the population in
the ith quadrant and Ntot is the total atom number. We
observe a clear, polarization-dependent biasing of the
domains toward forming in off-diagonal states, indicative
of interaction-momentum coupling, see Fig. 3(b). For
linear shaking, which maximizes the interaction-momen-
tum coupling, the diagonal imbalance approaches 1 (−1)
with θs ¼ 0° (180°), as expected. Under these conditions,
the D4 symmetry of the ground states is clearly broken
by interactions. As the shaking polarization becomes more
circular, the imbalance is progressively reduced. For
precisely circular shaking (θs ¼ 90°) the interaction-
momentum coupling disappears and the D4 symmetry
is restored, resulting in a diagonal imbalance of D ¼
0.04ð5Þ consistent with zero. Because of the finite ramp
speed in our experiments, the phase transition is not
adiabatic [35]. As a result, the bias of the gas toward off-
diagonal states increases with the energy difference between
the wells. This effect causes the magnitude of the diagonal
imbalance to smoothly increase as the interaction-momentum
coupling is enhanced by tuning the shaking polarization from
circular toward linear, as observed in Fig. 3(b).
In the second stage of our experiments, we generate a

density-dependent gauge field by applying synchronized
shaking and interaction strength modulation. We tune the
magnetic field near a Feshbach resonance [39] to modulate
the interaction strength as gðtÞ ¼ g0 − g1 cos ðωt − θgÞ at
the same frequency as the lattice shaking and with phase θg;
see Fig. 4(a). In this case, the interaction-momentum
coupling can be understood intuitively by comparing the
microscopic density and the interaction strength during
each shaking period; see Fig. 4(a). When the interaction
strength oscillates in phase (out of phase) with the density,
the interaction energy is maximized (minimized).
To quantify the interaction-induced field, the interaction

factor can be decomposed as, see Eq. (4),

ηq ¼ ηð0Þq þ g1
g0

ηð1Þq ; ð6Þ

where ηð0Þq ¼ hηqðtÞi is the static interaction factor and

ηð1Þq ¼ −hηqðtÞi cosðωt − θgÞ is the modulated interaction
factor. We use circular shaking (θs ¼ 90°) so that the static
interaction factor maintains the D4 symmetry. For small
momentum jqj ≪ qL the modulated interaction factor takes
the form [37],

ηð1Þq ¼ −
ffiffiffiffiffiffi
αβ

2

r
seΘ · q; ð7Þ

which corresponds to the density-dependent gauge potential,

AðρÞ ¼
ffiffiffiffiffiffi
αβ

2

r
msg1ρeΘ; ð8Þ

whose direction is given by eΘ with Θ≡ θg − θs=2. The
equivalent treatment of the gauge field in terms of an

FIG. 4. Density-dependent synthetic field from synchronized
shaking and interaction strength modulation. (a) The upper panel
plots the mean, microscopic density for circular shaking
(θs ¼ 90°). Each curve is colored as in Fig. 1(b). The lower
panel shows the modulated interaction strength gðtÞ ¼ g0 −
g1 cos ðωt − θgÞ. The modulated interactions raise (lower) the
energy of quasimomentum states whose density oscillates in
phase (out of phase) with the interaction modulation. (b) Modu-
lated interaction factors for θg ¼ 90° (left) and θg ¼ 45° (right).
(c) Measurement of the average quasimomentum of the con-
densate (q� ¼ 0.08qL) in the presence of the interaction-induced
field (circles). Error bars show standard error. The dashed curves
show simultaneous, sinusoidal fits, which yield a phase offset of
only 4� 3° from expectations. Simulations using the Gross-
Pitaevskii equation [40] (solid magenta curves) agree well with
the experiment.
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occupation-dependent Peierls phase does not rely on the
small momentum limit [37]. The static interaction factor

ηð0Þq , which does not correspond to a gauge potential, can be
made negligible by reducing the average interaction
strength g0. Salient examples of the modulated interaction
factors from a numerical calculation are shown in
Fig. 4(b).
Experimentally, we test for the interaction-induced

gauge field by measuring the bias toward particular
quasimomenta as a function of the interaction phase θg.
We first prepare the condensate in a stationary lattice with
an oscillating scattering length. We then begin to circularly
shake the lattice, linearly increasing the shaking amplitude
and driving the system across the phase transition. After a
brief settling time, we measure the momentum distribution
ρðqÞ based on time-of-flight expansion [36] and calculate
the average quasimomentum hqi ¼ R

dqqρðqÞ [37].
The average quasimomentum after the phase transition

shows a clear bias depending on the interaction modulation
phase θg, indicative of the interaction-induced gauge field,
see Fig. 4(c). Based on the form of the gauge potential
shown in Eq. (7), we expect the biasing along the x and y
axes to take the approximate forms hqxi ∝ cosðθg − 45°Þ
and hqyi ∝ sinðθg − 45°Þ. Simultaneous, sinusoidal fits to
the data in Fig. 4(c) yield a phase consistent with this
prediction. The magnitude of the bias in momentum does
not reach q�, since it depends sensitively on the dynamics
of crossing the phase transition [11,35] as well as the
magnitude of the gauge potential. In principle, the size of
the interaction induced field, and therefore the bias, can be
increased by using a larger interaction modulation ampli-
tude. However, doing so can induce other instabilities in the
gas [41–43].
To confirm that the magnitude of the observed effect

matches theoretical expectations, we have performed sim-
ulations of this experiment using the Gross-Pitaevskii
equation [40]. The resulting magenta curves in Fig. 4(c),
which show the average outcomes of five simulations at
each θg (20° steps) with different random noise seeds, agree
nicely with our experiments.
In summary, we have demonstrated an interaction-

induced gauge field based on synchronous lattice shaking
and interaction strength modulation. Our work presents a
paradigm to guide the simulation of gauge field theories
using ultracold atom systems. For example, this scheme can
be used directly to simulate the anyon-Hubbard model
[23,25–27], as detailed in the Supplemental Material [37].
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