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We present transport measurements on a dipolar superfluid using a Bose-Einstein condensate of 162Dy
with strong magnetic dipole-dipole interactions. By moving an attractive laser beam through the
condensate we observe an anisotropy in superfluid flow. This observation is compatible with an anisotropic
critical velocity for the breakdown of dissipationless flow, which, in the spirit of the Landau criterion, can
directly be connected to the anisotropy of the underlying dipolar excitation spectrum. In addition, the
heating rate above this critical velocity reflects the same anisotropy. Our observations are in excellent
agreement with simulations based on the Gross-Pitaevskii equation and highlight the effect of dipolar
interactions on macroscopic transport properties, rendering dissipation anisotropic.
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The discovery of superfluidity in liquid helium [1] is a
hallmark of quantum physics at the macroscopic scale. The
famous Landau criterion [2] relates the transport properties
of a superfluid, namely, the maximal velocity for friction-
less flow vc, to its spectrum of elementary collective
excitations. As a consequence, features of the system’s
excitation spectrum are reflected in the transport properties
of the superfluid. In the context of ultracold atoms,
superfluidity and the breakdown thereof have been studied
by moving microscopic impurities, i.e., single atoms, which
are realized by either stimulated Raman transitions [3] or
with atomic mixtures [4], allowing a direct comparison to
Landau’s criterion. Other experiments with macroscopic
impurities, e.g., laser beams or optical lattices, explored
superfluidity in a trapped Bose-Einstein condensate [5,6], a
two-dimensional Bose gas [7], or a Fermi gas in the BEC-
BCS crossover regime [8,9]. In the latter case, a reduced
critical velocity with respect to the prediction of Landau’s
criterion is observed.
In the spirit of these pioneering experiments, we perform

the first transport measurements on a dipolar Bose-Einstein
condensate (dBEC), a superfluid with anisotropic inter-
actions. We observe that the anisotropy of the dispersion
relation is reflected in both the anisotropy of the critical
velocity and the heating rate above this threshold. Our
measurements are in excellent agreement with dynamical
simulations of the extended Gross-Pitaevskii equation
(eGPE) [10], taking into account finite-size effects of the
trapped dBEC as well as the characteristics of the moving
impurity.
In order to illustrate the behavior of a dBEC we first

focus on the homogeneous gas, where the excitation
spectrum
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is known analytically [11]. It exhibits an anisotropic
dependency on the angle α between excitations with wave
vector k and the polarization direction B; see Fig. 1(a).
In a dBEC with a density n0 atoms with mass m are
subject to the contact interaction, characterized by the
scattering length as via g ¼ 4πℏ2as=m, as well as the
dipolar interaction, defined by the dipolar length add ¼
μ0μ

2
mm=12πℏ2 via the magnetic moment μm. The ratio

εdd ¼ add=as of these two length scales describes the
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FIG. 1. Probing anisotropic critical velocity. (a) Excitation
spectrum of a homogeneous dipolar Bose gas. The speed of
sound vs depends on the direction of the excitation k with respect
to the dipole polarization B, denoted by the angle α. (b) The
critical velocity vc (solid), as given by Eq. (2), becomes
anisotropic and is in general lower than vs (dashed). (c) Schematic
of the experiment. We drag an attractive laser beam through a
dipolar condensate perpendicular (α ¼ 90°, blue) and parallel
(α ¼ 0°, red) to the magnetic field direction.
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relative dipolar strength. The anisotropy of the dipolar
excitation spectrum has been confirmed experimentally
by Bragg spectroscopy of a chromium dBEC [12].
The Landau criterion [2] then relates the anisotropy of

the excitation spectrum to the breakdown of superfluidity,
since quasiparticles cannot be emitted by an impurity
moving at a velocity v smaller than the critical velocity
vc ¼ min ½ωðkÞ=k� in an isotropic fluid. For anisotropic
interactions the excitation wave vector k does not neces-
sarily coincide with the direction of movement v̂ of the
impurity [13]. In its generalized form the Landau criterion
therefore becomes vc ¼ min ½ωðkÞ=ðk · v̂Þ�. Applied to the
dipolar dispersion relation in Eq. (1), it yields an aniso-
tropic critical velocity
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see Fig. 1(b) (solid line). In general, the acquired vc is lower
than the speed of sound vsðαÞ ¼ ωðkÞ=kjk→0 (dashed line)
and only coincides with it for a movement parallel vs;k ¼
vsð0°Þ or perpendicular vs;⊥ ¼ vsð90°Þ to the polarization
axis. For 162Dy with a scattering length as ¼ 141ð17Þa0
[14] and a dipolar length add ¼ 131a0 the critical velocity
ranges from vs;⊥ ¼ 0.32 to vs;k ¼ 2.0 mm=s for a typical
density n0 ¼ 1020 m−3 as shown in Fig. 1(b).
In a confined dipolar system the situation changes since

such a system is additionally subject to roton softening
[15–17] at finite momentum k. This collective excitation
softening influences vc [18]. In this context the anisotropy
of the critical velocity was first predicted in [19] for a
quasi-2D dBEC. In order to fully account for such confine-
ment-induced effects and other experimental features, full
numerical simulations are required.
Here, we perform experiments aimed at measuring the

dependence of superfluid flow on the transport direction.
Our experimental procedure is as follows, see Fig. 1(c).
Starting with the setup described in Ref. [20] we focus an
attractive laser beam (λ ¼ 532 nm, along ẑ) on a trapped
dBEC of 162Dy atoms. The beam has a waist of w0 ≈
1.5 μm and power of P0 ≈ 1.3 μW. Using the theoretical
value of the dynamical polarizability, we estimate the
potential depth to V0 ≈ 0.5 μ, with μ being the chemical
potential of the gas. This “stirring beam” can be moved
transversally over a few μm in the imaging plane by means
of two electro-optical deflectors. In order to measure
superfluid properties we move the beam at a constant
velocity v ¼ 4rsfs given by the stirring amplitude rs,
which is the displacement with respect to the cloud center,
and the frequency fs of a single cycle. The position rðtÞ of
the stirring beam is thus a triangular periodic function
centered around zero with amplitude rs. There is a finite
acceleration at the turning points of the triangular motion,
leading to the emission of sound waves and thus small
heating for velocities below the critical one [21]. A minor

misalignment leads to a difference in stirring amplitudes for
x and y, but is fully accounted for as detailed in Ref. [22].We
probe the high-density region avoiding thermal wings by
choosing an amplitude rs=RTF ¼ 0.15–0.35, withRTF being
the Thomas-Fermi radius of the dBEC. Most of the mea-
surements are carried out in a harmonic trapping potential
with frequencies fx ¼ 52ð1Þ Hz ≈ fy ¼ 49ð1Þ Hz, fz ¼
168ð1Þ Hz with almost cylindrical symmetry along ẑ. In
this trap we prepare a dBEC at a condensed fraction of 0.7
with 1 × 104 to 2 × 104 atoms in total. Then—while moving
the beam continuously—the power of the stirring beam is
ramped up within 25 ms, kept constant for a time tstir ¼ 1 s,
and ramped down within 25 ms followed by an additional
200 ms for thermalization of the sample. Finally, we extract
the temperature T of the sample from in situ images; see
Ref. [22]. Because of finite-size effects and experimental
noise, our data cannot be considered as a clear proof of
superfluidity, but it is in excellent agreement with superfluid
flow. To quantify the anisotropy of superfluid flow and
compare with simulations we extract the critical velocity vc
with a fit function TðvÞ ¼ T0 þ htstirðv=vc − 1ÞΘðv − vcÞ.
It is constant in the dissipationless regime below vc and
increases linearly with a given heating rate _T ¼ hðv=vc − 1Þ
above vc, determined by the heating coefficient h.
In order to take the inhomogeneity and finite-size effects

of the BEC as well as the finite extent and depth of the
stirring beam into account, we conduct dynamic simula-
tions of the extended Gross-Pitaevskii equation [10,20],
which are explained in detail in Ref. [22]. The gain in total
energy per atom ΔE=N of a single cycle of the beam’s
movement is scaled by the number of oscillations tstirfs
in the experiment, thus assuming an identical increase in
energy induced by the subsequent stirring cycles.
Furthermore, there is a nonlinear relation between energy
and temperature even for the noninteracting Bose gas [23].
Since the observed change in temperature is less than 20%,
we assume a linear relation in this regime. Altogether,
the simulation data are thus mapped to a temperature T ¼
T0 þ ctstirfsΔE=NkB with the Boltzmann constant kB.
To get agreement between experimental data and simu-
lations we use the coefficient c as a fit parameter scaling
only the temperature axis. For the data presented in Fig. 2,
the factor c is in the range of 0.02–0.05 pointing towards a
much weaker heating induced by the subsequent stirring
cycles. This parameter also takes into account the men-
tioned relation between energy and temperature, the
uncertainty in the potential depth and finite-temperature
effects lowering the superfluid fraction [26]. A finite-
temperature theory would probably allow us to include
such effects and further model the introduced coefficient
properly. We emphasize that the rescaling procedure we use
here does not influence the critical velocity, which we
extract by applying the same fit function as used for the
experimental data. With the evaluation procedure at hand
we now turn to the measurements.
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In a first reference measurement we apply the magnetic
field Bkẑ. The problem is therefore isotropic in the xy plane
and moving the laser defect along x̂ or ŷ is expected to give
the same critical velocity. For both stirring directions along
x̂ (red diamonds) and ŷ (blue circles) we observe the typical
threshold in heating of the dBEC when the velocity of the
stirring beam is increased, see Fig. 2(a). The response is
clearly isotropic. Both the critical velocity and the heating
coefficient coincide. From the fits (dashed lines) we extract
the critical velocity vx ¼ 0.20ð5Þ and vy ¼ 0.20ð7Þ mm=s
with heating coefficients hx ¼ 8ð5Þ and hy ¼ 9ð8Þ nK=s,
respectively. For this measurement the stirring frequency is
varied between fs ¼ 3 and 60 Hz. Data points with stirring
frequency at the transversal trap frequency (gray) are
excluded from the analysis, since the coupling to the
center-of-mass oscillation in the trap can influence the
energy transfer. The agreement with the simulation data
(solid lines) is remarkable. We extract a critical velocity of
vx;sim ¼ vy;sim ¼ 0.21ð1Þ mm=s in excellent agreement
with the presented experimental values.
We now turn to the anisotropic case with the magnetic

field Bkx̂ pointing along one of the stirring directions.
Because of magnetostriction the cloud is deformed to an
aspect ratio of κ ¼ Rx=Ry ¼ 1.4 [11] in the imaging plane
with Thomas-Fermi radiiRx ¼ 6.0 andRy ¼ 4.3 μm. In this
configuration the cloud is elongated along the magnetic
field; thus the mean dipolar interaction is predominantly
attractive and therefore the peak density n0 ¼ 1.7 ×
1020m−3 is a factor of 2 higher as compared to the previous
case. More importantly, the dispersion relation becomes

anisotropic when comparing the stirring directions along
x̂kB and ŷ⊥B. In consequence, we directly observe a factor
of 2 difference in critical velocity, as shown in Fig. 2(b). The
extracted values are v⊥ ¼ 0.16ð2Þ and vk ¼ 0.36ð3Þ mm=s
with heating coefficients h⊥ ¼ 4.2ð9Þ and hk¼4.5ð9ÞnK=s,
that agree within the experimental error. The difference in
heating rates _T ¼ hðv=vc − 1Þ, as given by the slope in the
figure, can thus be fully attributed to the anisotropy of the
critical velocity. From this fact we infer that the anisotropy in
both critical velocity and heating rate share a common cause
in the anisotropy of collective excitations. Comparing to
simulation data yields excellent agreement, as can be seen in
Fig. 2(b). We stress that a single fit parameter c is used for
both curves. The anisotropy in heating rate is thus very well
reproduced by the simulation. We further extract v⊥;sim ¼
0.16ð1Þ and vk;sim ¼ 0.35ð2Þ mm=s in excellent agreement
with the experiment.
In order to ensure that the observed anisotropy is not

trivially caused by the anisotropic cloud shape, we invert the
aspect ratio of the cloud to κ ¼ Rx=Ry ≈ 1.4−1 by adjusting
the trapping potential. The trap frequencies in this case are
ffx; fy; fzg ¼ f81ð2Þ; 39ð1Þ; 140ð1Þg Hz counteracting
the magnetostriction along the magnetic field axis Bkx̂.
This leads to measured sizes Rx ¼ 4.3 and Ry ¼ 5.8 μm of
the condensate. The extracted critical velocities are v⊥ ¼
0.12ð3Þ and vk ¼ 0.26ð4Þ mm=s again with compatible
heating coefficients h⊥ ¼ 6ð3Þ and hk ¼ 7ð3Þ nK=s, as
shown in Fig. 2(c). The observed anisotropy of transport
remains in the same direction even though the cloud aspect
ratio was inverted, providing conclusive evidence that it

FIG. 2. Temperature of the dBEC after stirring for (a) the isotropic case with Bkẑ and (b) the anisotropic case with Bkx̂ in an almost
cylindrical trap. In (c) the trap is additionally reshaped to invert the cloud aspect ratio. The stirring beam is moved along the x (red
squares) or y (blue circles) axis, as illustrated in the insets with example in situ images. Critical velocities are extracted by a linear fit
(dashed) and marked with arrows. In (a) the response is isotropic with vx ¼ 0.20ð5Þ and vy ¼ 0.20ð7Þ mm=s, while we observe a clear
difference in (b) with v⊥ ¼ 0.16ð2Þ mm=s along ŷ and vk ¼ 0.36ð3Þ mm=s along x̂. In (c) we extract v⊥ ¼ 0.12ð3Þ and vk ¼
0.26ð4Þ mm=s proving that the observed anisotropy remains even when inverting the anisotropy of the atomic cloud. Data points with
stirring frequency matching the trapping frequencies (gray) are excluded from the analysis. Simulations of the eGPE for a single stirring
cycle (solid lines) show excellent agreement with the experiment. See text for further parameters.
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arises directly from the dipolar anisotropy. Once again for
this data set, excellent agreement with simulations is found.
We further compare the measured vc to the speed of

sound vs of the homogeneous dipolar gas introduced in
Eq. (2). For the given peak density the latter is vs;⊥ ¼ 0.42
and vs;k ¼ 2.6 mm=s, respectively. The measured critical
velocity vc=vs ¼ 0.1–0.4 is thus well below the expected
speed of sound in the cloud center. This value is in
agreement with the critical velocity measured in the
pioneering experiment with a contact-interacting BEC
[6]. An obvious effect lowering the measured vc is the
inhomogeneuos density distribution both along the beam
and transversally [27]. Vortex formation is a dominant
effect for repulsive obstacles lowering the density, but
should be suppressed in our experiment with an attractive
beam [28]. Yet, the macrosocopic size of the beam can
influence the measured critical velocity as well [29].
In conclusion, we performed the first transport

measurements on a dipolar BEC. The strong dipole-dipole
interaction of dysprosium atoms renders the excitation
spectrum of the dBEC, and thus the critical velocity for
the breakdown of superfluidity, anisotropic. We investigate
the latter by measuring the heating caused by moving an
attractive laser beam through the condensate. We find
excellent agreement comparing our data taken at a sizable
thermal fraction to dynamic simulations of the eGPE,
which is a zero temperature theory. We therefore deduce
that the effect of thermal excitations has a negligible
influence on the critical velocity in our experiment. As
discussed earlier, roton softening of the excitation spectrum
can decrease the critical velocity [18]. Yet, for the current
set of experiments with dipolar strength of εdd < 1 in
conjunction with a weak confinement along the magnetic
field this effect is likely negligible. Increasing both quan-
tities could lead to an observable reduction of the critical
velocity, which is an interesting perspective for future
studies. An anisotropic dispersion relation is expected to
have many more implications on hallmark properties of
superfluids, e.g., on vortices in rotating systems. In future
experiments we expect to find an anisotropic density
distribution around a vortex core [30]. Furthermore, this
effect induces anisotropic vortex-vortex interactions [31]
leading to transitions between vortex lattices of different
symmetries [32].
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Beugnon, C. Weitenberg, and J. Dalibard, Superfluid behav-
iour of a two-dimensional Bose gas, Nat. Phys. 8, 645 (2012).

[8] D. E. Miller, J. K. Chin, C. A. Stan, Y. Liu, W. Setiawan, C.
Sanner, and W. Ketterle, Critical Velocity for Superfluid
Flow across the BEC-BCS Crossover, Phys. Rev. Lett. 99,
070402 (2007).

[9] W. Weimer, K. Morgener, V. P. Singh, J. Siegl, K. Hueck,
N. Luick, L. Mathey, and H. Moritz, Critical Velocity
in the BEC-BCS Crossover, Phys. Rev. Lett. 114, 095301
(2015).

[10] M. Wenzel, F. Böttcher, T. Langen, I. Ferrier-Barbut, and
T. Pfau, Striped states in a many-body system of tilted
dipoles, Phys. Rev. A 96, 053630 (2017).

[11] T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T.
Pfau, The physics of dipolar bosonic quantum gases, Rep.
Prog. Phys. 72, 126401 (2009).

[12] G. Bismut, B. Laburthe-Tolra, E. Maréchal, P. Pedri, O.
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