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We theoretically investigate pumping of phonons by the dynamics of a magnetic film into a nonmagnetic
contact. The enhanced damping due to the loss of energy and angular momentum shows interference
patterns as a function of the resonance frequency and magnetic film thickness that cannot be described by
viscous (“Gilbert”) damping. The phonon pumping depends on the magnetization direction as well as
geometrical and material parameters and is observable, e.g., in thin films of yttrium iron garnet on a thick
dielectric substrate.
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The dynamics of ferromagnetic heterostructures is at the
root of devices for information and communication tech-
nologies [1–5]. When a normal metal contact is attached to
a ferromagnet, the magnetization dynamics drives a spin
current through the interface. This effect is known as spin
pumping and can strongly enhance the (Gilbert) viscous
damping in ultrathin magnetic films [6–8]. Spin pumping
and its (Onsager) reciprocal, the spin transfer torque [9,10],
are crucial in spintronics, as they allow electric control and
detection of magnetization dynamics. When a magnet is
connected to a nonmagnetic insulator instead of a metal,
angular momentum cannot leave the magnet in the form of
electronic or magnonic spin currents, but it can do so in the
form of phonons. Half a century ago, it was reported
[11,12] and explained [13–16] that magnetization dynam-
ics can generate phonons by magnetostriction. More
recently, the inverse effect of magnetization dynamics
excited by surface acoustic waves (SAWs) has been studied
[17–20] and found to generate spin currents in proximity
normal metals [21,22]. The emission and detection of
SAWs were combined in one and the same device
[23,24], and an adiabatic transformation between magnons
and phonons was observed in inhomogeneous magnetic
fields [25]. The angular momentum of phonons [26,27] has
recently come into focus again in the context of the
Einstein–de Haas effect [28] and spin-phonon interactions,
in general [29]. The interpretation of the phonon angular
momentum in terms of orbital and spin contributions [29]
has been challenged [30], a discussion that bears similar-
ities with the interpretation of the photon angular momen-
tum [31]. In our opinion, this distinction is rather semantic,
since it is not required to arrive at concrete results. A recent
quantum theory of the dynamics of a magnetic impurity
[32] predicts a broadening of the electron spin resonance
and a renormalized g factor by coupling to an elastic
continuum via the spin-orbit interaction, which appears to

be related to the enhanced damping and effective gyro-
magnetic ratio discussed here.
A phonon current generated by magnetization dynamics

generates damping by carrying away angular momentum
and energy from the ferromagnet. While the phonon
contribution to the bulk Gilbert damping has been studied
theoretically [33–38], the damping enhancement by inter-
faces to nonmagnetic substrates or overlayers has to our
knowledge not been addressed before. Here we present a
theory of the coupled lattice and magnetization dynamics of
a ferromagnetic film attached to a half-infinite nonmagnet,
which serves as an ideal phonon sink. We predict, for
instance, significantly enhanced damping when an yttrium
iron garnet (YIG) film is grown on a thick gadolinium
gallium garnet (GGG) substrate.
We consider an easy-axis magnetic film with a static

external magnetic field and equilibrium magnetization
either normal (see Fig. 1) or parallel to the plane. The
magnet is connected to a semi-infinite elastic material. The
magnetization and lattice are coupled by the magneto-
crystalline anisotropy and the magnetoelastic interaction,
giving rise to coupled field equations of motion in the
magnet [39–42]. By matching these with the lattice
dynamics in the nonmagnet by proper boundary conditions,
we predict the dynamics of the heterostructure as a function
of geometrical and constitutive parameters. We find that

FIG. 1. Magnetic film (shaded) with magnetization m attached
to a semi-infinite elastic material, which serves as an ideal
phonon sink.
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magnetization dynamics induced, e.g., by ferromagnetic
resonance (FMR) excites the lattice in the attached non-
magnet. In analogy with the electronic case, we call this
effect “phonon pumping” that affects the magnetization
dynamics. We consider only equilibrium magnetizations
that are normal or parallel to the interface, in which the
pumped phonons are pure shear waves that carry angular
momentum. We note that for general magnetization direc-
tions both shear and pressure waves are emitted, however.
We consider a magnetic film (metallic or insulating) that

extends from z ¼ −d to z ¼ 0. It is subject to sufficiently
high magnetic fieldsH0 such that magnetization is uniform,
i.e., MðrÞ ¼ M. For in-plane magnetizations, H0 > Ms,
where the magnetization Ms governs the demagnetizing
field [43]. The energy of the magnet-nonmagnet bilayer can
be written

E ¼ ET þ Eel þ EZ þ ED þ E0
K þ Eme; ð1Þ

which are integrals over the energy densities εXðrÞ. The
different contributions are explained in the following.
The kinetic energy density of the elastic motion reads

εTðrÞ ¼
(

1
2
ρ _u2ðrÞ; z > 0;

1
2
ρ̃ _u2ðrÞ; −d < z < 0;

ð2Þ

and the elastic energy density [44]

εel¼

8>><
>>:

1
2
λ½PαXααðrÞ�2þμ

P
αβ
X2
αβðrÞ; z>0;

1
2
λ̃½PαXααðrÞ�2þ μ̃

P
αβ
X2
αβðrÞ; −d<z<0;

ð3Þ

where α; β ∈ fx; y; zg, λ and μ are the Lamé parameters,
and ρ is the mass density of the nonmagnet. The tilded
parameters are those of the magnet. The strain tensor Xαβ is
defined in terms of the displacement fields uαðrÞ:

XαβðrÞ ¼
1

2

�∂uαðrÞ
∂rβ þ ∂uβðrÞ

∂rα
�
: ð4Þ

EZ ¼ −μ0VM ·Hext is the Zeeman energy for Hext ¼
H0 þ hðtÞ, where hðtÞ is time dependent. ED ¼
1
2
μ0VMTDM is the magnetostatic energy with shape-

dependent demagnetization tensor D and V the volume
of the magnet. For a thin film with the z axis along the
surface normal n0, Dzz ¼ 1, while the other components
vanish. E0

K ¼ K1Vðm × n0Þ2 is the uniaxial magnetocrys-
talline anisotropy in the absence of lattice deformations,
where m ¼ M=Ms and K1 is the anisotropy constant. The
magnetoelastic energy Eme couples the magnetization to
the lattice, as discussed in the following.

The magnetoelastic energy density can be expanded as

εmeðrÞ ¼
1

M2
s

X
α;β

MαðrÞMβðrÞ × ½BαβXαβðrÞ þ CαβΩαβðrÞ�:

ð5Þ

For an isotropic medium, the magnetoelastic constants Bαβ

read [45]

Bαβ ¼ δαβBk þ ð1 − δαβÞB⊥: ð6Þ

Rotational deformations as expressed by the tensor

ΩαβðrÞ ¼
1

2

�∂uαðrÞ
∂rβ −

∂uβðrÞ
∂rα

�
ð7Þ

are often disregarded [39–42,46] but lead to a position
dependence of the easy axis nðrÞ from the equilibrium
value n0 ¼ ez and an anisotropy energy density [29,47,48]

εKðrÞ ¼
K1

M2
s
½M × nðrÞ�2: ð8Þ

To first order in the small deformation,

δnðrÞ ¼ nðrÞ − n0 ¼

0
B@

ΩxzðrÞ
ΩyzðrÞ

0

1
CA; ð9Þ

εKðrÞ ¼ ε0K þ 2K1ðn0 −mzmÞ · δnðrÞ: ð10Þ

From Ωαβ ¼ −Ωβα, it follows that (for nonchiral crystal
structures) Cαβ ¼ −Cβα. For the uniaxial anisotropy con-
sidered here, Cxz ¼ Cyz ¼ −K1. The magnetoelastic cou-
pling due to the magnetocrystalline anisotropy thus
contributes [47]

εKmeðrÞ¼−
2K1

M2
s
MzðrÞ½MxðrÞΩxzðrÞþMyðrÞΩyzðrÞ�: ð11Þ

Pure YIG is magnetically very soft, so the magnetoelastic
constants are much larger than the anisotropy constant
[49,50]:

Bk ¼ 3.48 × 105 J×m−3; B⊥ ¼ 6.96 × 105 J×m−3;

K1 ¼ −6.10 × 102 J×m−3; ð12Þ

but this ratio can be very different for other magnets. We
find below that for the Kittel mode dynamics both coupling
processes cannot be distinguished, even though they can
characteristically affect the magnon-phonon coupling for
finite wave numbers.
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The magnetization dynamics within the magnetic film is
described by the Landau-Lifshitz-Gilbert (LLG) equation
[51,52]

_m ¼ −γμ0m ×Heff þ τðαÞm ; ð13Þ

where −γ is the gyromagnetic ratio, the effective magnetic
field which includes the magnetoelastic coupling

Heff ¼ −∇mE=ðμ0VMsÞ; ð14Þ

and the Gilbert damping torque [52]

τðαÞm ¼ αm × _m: ð15Þ

The equation of motion of the elastic continuum reads [44]

üðr; tÞ ¼ c2t△uðr; tÞ þ ðc2l − c2t Þ∇½∇ · uðr; tÞ�; ð16Þ

with longitudinal and transverse sound velocities

cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ 2μ

ρ

s
and ct ¼

ffiffiffi
μ

ρ

r
; ð17Þ

respectively, where elastic constants and the mass density
of the nonmagnet and magnet can differ.
A uniform precession of the magnetization interacts with

the lattice deformation at the surfaces of the magnetic film
[13,14] and at defects in the bulk. The present theory then
holds when the thickness of the magnetic film d ≪

ffiffiffiffi
A

p
,

where A is the cross section area. The Kittel mode induces
lattice distortions that are uniform in the film plane uαðrÞ ¼
uαðzÞ [14]. The elastic energy density is then affected by
shear waves only:

εelðzÞ ¼
(

μ
2
½u0x2ðzÞ þ u0y2ðzÞ�; z > 0;

μ̃
2
½u0x2ðzÞ þ u0y2ðzÞ�; −d < z < 0;

ð18Þ

where u0αðzÞ ¼ ∂uαðzÞ=∂z. The magnetic field Hext ¼
(hxðtÞ; hyðtÞ; H0)

T with monochromatic drive hx;yðtÞ ¼
Reðhx;ye−iωtÞ and static component H0 along the z axis.
At the FMR frequency, ω⊥ ¼ ωH þ ωA with ωH ¼ γμ0H0

and ωA ¼ γð2K1=Ms − γμMsÞ. The equilibrium magneti-
zation is perpendicular for ω⊥ > 0. The magnetoelastic
energy derived above then simplifies to

Ez
me ¼

ðB⊥ − K1ÞA
Ms

X
α¼x;y

Mα½uαð0Þ − uαð−dÞ�; ð19Þ

which results in surface shear forces F�ð0Þ ¼ −F�ð−dÞ ¼
−ðB⊥ − K1ÞAm�, with F� ¼ Fx � iFy. These forces gen-
erate a stress or transverse momentum current in the z
direction (see Supplemental Material [53]):

j�ðzÞ ¼ −μðzÞu�0ðzÞ; ð20Þ

with μðzÞ ¼ μ for z > 0, μðzÞ ¼ μ̃ for −d < z < 0, and
u� ¼ ux � iuy, which is related to the transverse momen-
tum p�ðzÞ ¼ ρ½ _uxðzÞ � i _uyðzÞ� by Newton’s equation:

_p�ðzÞ ¼ −
∂
∂z j�ðzÞ: ð21Þ

The boundary conditions require momentum conservation
and elastic continuity at the interfaces:

j�ð−dÞ ¼ ðB⊥ − K1Þm�; ð22Þ

j�ð0þÞ − j�ð0−Þ ¼ −ðB⊥ − K1Þm�; ð23Þ

u�ð0þÞ ¼ u�ð0−Þ: ð24Þ

We treat the magnetoelastic coupling as a small perturba-
tion, and therefore we approximate the magnetization m�
entering the above boundary conditions as independent of
the lattice displacement u�. The loss of angular momentum
(see Supplemental Material [53]) affects the magnetization
dynamics in the LLG equation in the form of a torque,
which we derive from the magnetoelastic energy (19):

_m�jme ¼ �i
ωc

d
½u�ð0Þ − u�ð−dÞ�

¼ �iωcReðvÞm� ∓ ωcImðvÞm�; ð25Þ

where ωc¼ γðB⊥−K1Þ=Ms (for YIG, ωc¼8.76×1011 s−1)
and v ¼ ½u�ð0Þ − u�ð−dÞ�=ðdm�Þ. We can distinguish an
effective field

Hme ¼
ωc

γμ0
ReðvÞez ð26Þ

and a damping coefficient

αð⊥Þ
me ¼ −

ωc

ω
Imv: ð27Þ

The latter can be compared with the Gilbert damping
constant α that enters the linearized equation of motion as

_m�jα ¼ �iα _m� ¼ �αωm�: ð28Þ

With the ansatz

u�ðz;tÞ¼
�
C�eikz−iωt; z>0;

D�eik̃z−iωtþE�e−ik̃z−iωt; −d<z<0;
ð29Þ

we obtain
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v ¼ Msωc

ωγdρ̃c̃t

2½cosðk̃dÞ − 1� − i ρctρ̃c̃t
sinðk̃dÞ

sinðk̃dÞ þ i ρctρ̃c̃t
cosðk̃dÞ ; ð30Þ

and the damping coefficient for perpendicular magnetiza-
tion

αð⊥Þ
me ¼

�
ωc

ω

�
2 Ms

γdρ̃c̃t

ρct
ρ̃c̃t

4sin4ðk̃d
2
Þ

sin2ðk̃dÞ þ ðρctρ̃c̃t
Þ2cos2ðk̃dÞ ; ð31Þ

where ω ¼ ctk ¼ c̃tk̃. The oscillatory behavior of the

damping αð⊥Þ
me comes from the interference of the elastic

waves that are generated at the top and bottom surfaces of
the magnetic film. When they constructively (destructively)
interfere at the FMR frequency, the damping is enhanced
(suppressed), because the magnon-phonon coupling and
phonon emission are large (small).
When ρct ≪ ρ̃c̃t (soft substrate) or when acoustic

impedances are matched (ρct ¼ ρ̃c̃t), damping at the
resonance k̃d ¼ ð2nþ 1Þπ with n ∈ N0 [14] simplifies to

αð⊥Þ
me →

�
ωc

ω

�
2 4Ms

γdρct
: ð32Þ

When ρct ≫ ρ̃c̃t (hard substrate), the magnet is acousti-
cally pinned at the interface and the acoustic resonances are
at k̃d ¼ ð2nþ 1Þπ=2 [14] with

αð⊥Þ
me →

�
ωc

ω

�
2 Ms

γdρ̃c̃t

ρct
ρ̃c̃t

: ð33Þ

In contrast to Gilbert damping, αð⊥Þ
me depends on the

frequency and vanishes in the limits ω → 0 and ω → ∞.
Therefore, it does not obey the LLG phenomenology and in
the nonlinear regime does not simply enhance α in Eq. (15).
The magnetization damping α0 in bulk magnetic insulators,
on the other hand, is usually of the Gilbert type. It is caused
by phonons, as well, but not necessarily the magnetoelastic
coupling. A theory of Gilbert damping [38] assumes a
bottleneck process by sound wave attenuation, which
appears realistic for magnets with high acoustic quality
such as YIG. In the present phonon-pumping model,
energy and angular momentum is lost by the emission
of sound waves into an attached perfect phonon wave
guide, so the pumping process dominates. Such a scenario
could also dominate the damping in magnets in which the
magnetic quality is relatively higher than the acoustic one.
When the field is rotated to Hext ¼ (hxðtÞ; H0; hzðtÞ)T ,

the equilibrium magnetization is in the in-plane y direction
and the magnetoelastic energy couples only to the strain uy:

Ey
me ¼ ðB⊥ − K1ÞA

Ms
Mz½uyð0Þ − uyð−dÞ�: ð34Þ

The FMR frequency for in-plane magnetization ωk ¼
ωH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ωA=ωH

p
with ωA < ωH. The magnetoelastic cou-

pling generates again only transverse sound waves. The
linearized LLG equation including the phononic torques
reads now

_mx ¼ ðωH þ ωmeÞmz − γμ0hz − ωAmz þ ðαþ αmeÞ _mz;

ð35Þ

_mz ¼ −ωHmx þ γμ0hx − α _mx; ð36Þ

where αme is given by Eq. (27) and ωme ¼ γμ0Hme with
effective fieldHme ¼ Hme · ez given by Eq. (26). BothHme
and αme contribute only to _mx. The phonon pumping is
always less efficient for the in-plane configuration:

αðkÞme ¼ 1

1þ ðωk=ωHÞ2
αð⊥Þ
me : ð37Þ

As an example, we insert parameters for a thin YIG
film on a semi-infinite GGG substrate at room temperature.
We have chosen YIG because of its low intrinsic damping
and high-quality interface to the GGG substrate.
Substantially larger magnetoelastic coupling in other
materials should be offset against generally larger bulk
damping. For GGG, ρ ¼ 7.07 × 103 kg × m−3, cl ¼
6411 m×s−1, and ct ¼ 3568 m×s−1 [55]. For YIG,
Ms ¼ 1.4 × 105 A×m−1, γ ¼ 1.76 × 1011 s−1 T−1, ρ̃ ¼
5170 kg × m−3, c̃l ¼ 7209 m×s−1, c̃t ¼ 3843 m× s−1,
and ωc ¼ 8.76 × 1011 s−1 [49,50]. The ratio of the acoustic
impedances ρ̃c̃t=ρct ¼ 0.79. The damping enhancement

αð⊥Þ
me is shown in Fig. 2 over a range of FMR frequencies

and film thicknesses. The FMR frequencies ω⊥ ¼ ωH þ
ωA and ωk ¼ ωH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ωA=ωH

p
for the normal and in-plane

configurations are tunable by the static magnetic field
component H0 via ωH ¼ γμ0H0. The damping enhance-
ment peaks at acoustic resonance frequencies ν ≈ nc̃t=ð2dÞ.
The counterintuitive result that the damping increases for
thicker films can be understood by the competition between

FIG. 2. Damping enhancement αð⊥Þ
me by phonon pumping in a

YIG film on a semi-infinite GGG substrate, as given by Eq. (31).
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the magnetoelastic effect that increases with thickness at
the resonances and wins against the increase in total
magnetization. However, with increasing thickness, the
resonance frequencies decrease below a minimum value
at which FMR can be excited. For a fixed FMR frequency,
αme → 0 for d → ∞. For comparison, the Gilbert damping
in nanometer-thin YIG films is of the order of α ∼ 10−4

[56], which is larger than corresponding values for single
crystals. We conclude that the enhanced damping is at least
partly caused by an interaction with the substrate and not by
a reduced crystal quality.
The resonances in the figures are very broad, because

the ρct ≈ ρ̃c̃t implies a very strong coupling of the discrete
phonons in the thin magnetic layer with the phonon
continuum in the substrate. When an acoustic mismatch
is introduced, the broad peaks increasingly sharpen, reflect-
ing the increased lifetime of the magnon polaron reso-
nances in the magnet.

The frequency-dependent effective magnetic field Hð⊥Þ
me

is shown in Fig. 3. The frequency dependence of Hð⊥Þ
me

implies a weak frequency dependence of the effective
gyromagnetic ratio

γð⊥Þ
eff ¼ γ

�
1þ γμ0H

ð⊥Þ
me

ω

�
: ð38Þ

In the limit of vanishing film thickness, μ0H
ð⊥Þ
me →

−ðB⊥ − K1Þ2=ðMsμ̃Þ.
We assumed that the nonmagnet is an ideal phonon sink,

which means that injected sound waves do not return. In the
opposite limit in which the phonons cannot escape, i.e.,
when the substrate is a thin film with high acoustic quality,
the additional damping vanishes. This can be interpreted in
terms of a phonon accumulation that, when allowed to
thermalize, generates a phonon chemical potential and/or
nonequilibrium temperature. The nonequilibrium thermo-
dynamics of phonons in magnetic nanostructures is a
subject of our ongoing research.

The damping enhancement by phonons may be com-
pared with that from electronic spin pumping [6–8]:

αsp ¼
γℏ

4πdMs

h
e2

g; ð39Þ

which is inversely proportional to the thickness d of the
magnetic film and does not depend on the FMR frequency,
i.e., obeys the LLG phenomenology. Here, g is the spin
mixing conductance per unit area at the interface. While
phonons can be pumped into any elastic material, spin
pumping requires an electrically conducting contact. With a
typical value of hg=e2 ∼ 1018 m−2, the damping enhance-
ment of YIG on platinum is αsp ∼ 10−2 nm=d. The physics
is quite different, however, since αsp, in contrast to αme,
does not require coherence over the interface.
In conclusion, the pumping of phonons by magnetic

anisotropy and magnetostriction causes frequency-
dependent contributions to the damping and effective field
of the magnetization dynamics. The generation of phonons
by magnetic precession can cause significant damping in a
magnetic film when grown on an insulating, nonmagnetic
substrate and partly explains the increased damping invar-
iably observed for thinner films. The implications of further
reaching ramifications, such as phonon-induced dynamic
exchange interactions, phonon accumulations, and the
phonon spin Seebeck effect require additional research.
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