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Non-Hermitian systems exhibit striking exceptions from the paradigmatic bulk-boundary correspon-
dence, including the failure of bulk Bloch band invariants in predicting boundary states and the (dis)
appearance of boundary states at parameter values far from those corresponding to gap closings in periodic
systems without boundaries. Here, we provide a comprehensive framework to unravel this disparity based
on the notion of biorthogonal quantum mechanics: While the properties of the left and right eigenstates
corresponding to boundary modes are individually decoupled from the bulk physics in non-Hermitian
systems, their combined biorthogonal density penetrates the bulk precisely when phase transitions occur.
This leads to generalized bulk-boundary correspondence and a quantized biorthogonal polarization that is
formulated directly in systems with open boundaries. We illustrate our general insights by deriving the
phase diagram for several microscopic open boundary models, including exactly solvable non-Hermitian
extensions of the Su-Schrieffer-Heeger model and Chern insulators.
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The quest for a complete classification and comprehen-
sive physical understanding of topological phases of matter
such as topological insulators [1–3] has been at the
forefront of research in physics for many years. For closed
systems, as described by Hermitian Hamiltonians, the so-
called bulk-boundary correspondence represents a ubiqui-
tous guiding principle to the phenomenology of topological
insulators: bulk topological invariants characterizing a
given phase are uniquely reflected in gapless (metallic)
surface states. This general pattern is found throughout the
recently established hierarchy of topological phases, where
nth order phases in d spatial dimensions feature d-n
dimensional generalized boundary states [4–8].
In contrast to this systematic picture, quite basic ques-

tions have so far remained unanswered for open systems
governed by non-Hermitian Hamiltonians [9] with appli-
cations ranging from various mechanical and optical meta-
materials subject to gain and loss terms [10], to quasipar-
ticles with finite lifetime in heavy-fermion systems [11,12].
The topological properties of such systems can crucially
differ from their Hermitian counterparts [9,13–30], as
exemplified by the prediction and experimental observation
of unconventional topological boundary modes in certain
parity time-reversal (PT ) symmetric systems [27–32]. At a
more fundamental level, the generalization to non-
Hermitian systems of the bulk-boundary correspondence
is an open question that has recently become a subject of
active and controversial discussion [9,13–17]. The para-
mount issue is the so-called non-Hermitian skin effect,
meaning that a macroscopic number of left and right
eigenmodes can pile up exponentially close to the boundary
[13,15,23]. In this scenario, where even the bulk spectra

qualitatively depend on the boundary conditions, the
conventional approach of predicting boundary modes from
topological invariants defined for periodic systems does not
provide a conclusive physical picture.
In this Letter, we overcome these issues by introducing a

widely applicable approach to understand the enigmatic
bulk-boundary correspondence in non-Hermitian systems
using the framework of biorthogonal quantum mechanics
[33]. There, a biorthogonal set of right and left eigenstates
of a non-Hermitian Hamiltonian replaces the notion of a
conventional eigensystem familiar from the Hermitian
realm. This generalization accounts for the fact that non-
Hermitian Hamiltonians may feature a complex spectrum
and non-orthogonal eigenstates. Below, we construct a
biorthogonal polarization P that is able to accurately
predict the occurrence of boundary and domain-wall modes
in a broad class of non-Hermitian systems, even in the
presence of the aforementioned non-Hermitian skin effect.
Quite remarkably, dealing with open boundary systems
from the outset, our theory explains a number of intriguing
numerical observations in a natural and unified way, such
as the occurrence of boundary zero modes in parameter
regimes that are in striking disagreement with predictions
from the conventional bulk-boundary correspondence. To
elucidate and practically apply our theoretical analysis, we
generalize an existing approach for analytically finding
exact boundary states [34,35] to a large set of non-
Hermitian models including Su-Schrieffer-Heeger (SSH)
chains [15,16,18–20,36] featuring zero modes at the ends,
and the Rice-Mele model [37], which realizes a non-
Hermitian generalization of a Chern insulating phase with
chiral edge states [38–40].
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Exact boundary modes in non-Hermitian models.—We
study generic lattice models that consist of two single-
orbital sublattices, A and B. For concreteness, we start with
systems in one spatial dimension (1D), noting that exam-
ples of 2D models will also be discussed further below. The
non-Hermitian Bloch Hamiltonian of a lattice with trans-
lational invariance then reads Hk ¼ Φ†

kHkΦk, where Φ
†
k ¼ðc†A;k; c†B;kÞ with c†AðBÞ;k the creation operator of an electron

on site A (B) and

Hk ¼ dðkÞ · σ; dðkÞ ∈ C3; ð1Þ

with σ the vector of Pauli matrices, and k the quasi-
momentum. Writing d1ðkÞ≡ Re½dðkÞ� and d2ðkÞ≡
Im½dðkÞ�, the eigenvalues are E�ðkÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
1ðkÞ − d2

2ðkÞ þ 2id1ðkÞ · d2ðkÞ
p

, and the exceptional
points (EPs) are retrieved by finding the degeneracy in the
spectrum, i.e., EþðkÞ ¼ E−ðkÞ ¼ 0. For a system with open
boundaries whose real-space Hamiltonian is H ¼ Φ†HΦ,
where Φ† ¼ ðc†A;1; c†B;1; c†A;2;…Þ with c†AðBÞ;n the creation

operator of an electron on sublattice A (B) in unit cell n.
The eigenvalue equations read

HjΨR;ii ¼ EijΨR;ii; H†jΨL;ii ¼ E�
i jΨL;ii; ð2Þ

where jΨLðRÞ;ii are the left (right) eigenvectors with i the
band index.
We now proceed by considering models with short-range

hopping defining dxðkÞ � idyðkÞ≡ f� þ g�e�ik·a, where
a is the lattice vector between neighboring unit cells. When
the open system terminates with an A site at both ends, i.e.,
the total number of sites is odd and the last unit cell is
broken, we find that there is always a mode with energy dz,
whose wave function has an exactly disappearing ampli-
tude on all B sites due to destructive interference, such that

jψRi ¼ N R

XN
n¼1

rnRc
†
A;nj0i; rR ¼ −

fþ
gþ

; ð3Þ

jψLi ¼ N L

XN
n¼1

rnLc
†
A;nj0i; rL ¼ −

f�−
g�−

; ð4Þ

are exact eigenstates with N LðRÞ the normalization factor,
jψLðRÞi ∈ fjΨLðRÞ;iig and rLðRÞ are found from solving
Eq. (2) for jψLðRÞi [34,35]. Below we use these solutions to
elucidate our general conclusions.
Biorthogonal bulk-boundary correspondence.—In

Hermitian systems, the occurrence of protected boundary
modes can be determined from the bulk-phase diagram of a
periodic system without boundaries, where transition
points are marked by bulk-band touchings. In contrast,
in non-Hermitian systems the bulk-band touchings might
discontinuously shift in parameter space when going
from periodic to open boundary conditions (e.g., see the

qualitative difference between the gray and blue spectra in
Fig. 1). This phenomenon shows that the conventional
bulk-boundary correspondence cannot be generally valid
for non-Hermitian systems. Here, we remedy this issue by
constructing an analogue of the bulk-boundary correspon-
dence, where both the bulk and the edge quantities are
defined in systems with open boundaries. We start by
noting that, in sharp contrast to Hermitian matrices, the
right and left eigenvectors of non-Hermitian Hamiltonians
are in general different and not necessarily mutually
orthogonal. To address this situation one can choose the
normalization hΨL;ijΨR;ji ¼ δi;j to obtain a biorthogonal
set [33], which is complete away from EPs, such that
N �

LN R ¼ ðr�LrRÞ−1ðr�LrR − 1Þ=½ðr�LrRÞN − 1� for the states
described in Eqs. (3) and (4). To study the localization of
modes in the biorthogonal context, we consider the bio-
rthogonal expectation value of the projection operator
Πn ¼ jeA;niheA;nj þ jeB;niheB;nj with jeAðBÞ;ni ¼ c†AðBÞ;nj0i
onto unit cell n. For the exact solutions we find
hΠni≡ hψLjΠnjψRi ¼ N �

LN Rðr�LrRÞn, such that jr�LrRj <
1 (jr�LrRj > 1) means the mode is exponentially localized to
the unit cell n ¼ 1 (n ¼ N), whereas Eqs. (3) and (4)
describe an exact bulk state when

jr�LrRj ¼ 1: ð5Þ

This criticality condition correctly marks the boundary
between parameter regions where the number and/or
localization properties of boundary modes change. Note

FIG. 1. Energy spectra (absolute values) of the non-Hermitian
SSH model for t1 ¼ t2 ¼ 1, γ ¼ 3, and N ¼ 46. The gray lines
indicate the periodic Bloch bands while the qualitatively different
spectra in blue (bulk) and red (edge) correspond to the open
system. The orange (dark green dashed) vertical lines indicate
where r�LrR ¼ 1 (r�LrR ¼ −1) and the gray dotted-dashed lines
correspond to the EPs of the periodic Bloch Hamiltonian. The
value of P is indicated by brackets and shows that we indeed find
two zero modes when P ¼ 1, no zero modes when P ¼ 0, and
that the bulk gap closes precisely where P jumps (the small
deviation is a finite size effect).
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that in the Hermitian limit rR ¼ rL, and Eq. (5) still
accurately predicts the (dis)appearance of boundary modes.
More generally, for left and right boundary states with
penetration length ξL and ξR, respectively, i.e., hnjψLðRÞi ∼
e−n=ξLðRÞ with jni ¼ jeA;ni þ jeB;ni, the corresponding con-
dition reads

ξR þ ξL ¼ 0; ð6Þ
which highlights the fact that, at criticality, a biorthogonal
bulk state forms from right and left states localized at
opposite ends.
Using the eigenstates jψRi, jψLi we now construct a

crucial quantity coined biorthogonal polarization P, which
is defined as

P≡ 1 − lim
N→∞

�
ψL

����
P

nnΠn

N

����ψR

�
ð7Þ

and exhibits a quantized jump precisely at the points
determined by the condition (6). While the biorthogonal
density hΠni is in general complex valued, P is quantized
for any boundary state independent of details by virtue of
the biorthogonal normalization condition. Physically, P is a
quantitative measure for the biorthogonal localization of
the mode which is towards n ¼ 1 (n ¼ N) when P ¼ 1
(P ¼ 0). Accordingly, P ¼ 1 when 1=ξL þ 1=ξR > 0 (or
jr�LrRj < 1) and P ¼ 0 when 1=ξL þ 1=ξR < 0 (or
jr�LrRj > 1). This leads to a biorthogonal bulk-boundary
correspondence in the following sense: when P jumps
between 0 and 1, the gap between the boundary state and
the bulk spectrum must close in the open system. It is
crucial to note that a polarization calculated from either the
right or left eigenstates alone would give different pre-
dictions that are not compatible with numerical observa-
tions on various systems. Here, instead we show explicitly
in several examples that Eq. (6) accurately predicts band
touchings associated with changes in the number and
spatial localization of boundary modes at a given end of
the system.
It is instructive to consider systems that are terminated in

different ways. For this purpose, the solvable models are
particularly illustrative: if the chain terminates with B sites
on both ends, the wave functions in Eqs. (3) and (4) are
still exact with A → B and rLðRÞ → 1=rLðRÞ, such that the
P ¼ 0, 1 regions are interchanged while leaving the
transition points unaltered. For a chain with an even
number of sites, Eqs. (3) and (4) are no longer exact
solutions, while their biorthogonal polarization P remains
the relevant predictive quantity: two modes localized at the
ends of the chain appear when P ¼ 1 (jr�LrRj < 1), since
both ends locally map onto the endm ¼ 1 of the odd chain,
while for P ¼ 0 (jr�LrRj ≥ 1) such a mapping entails no
end modes.
To illustrate these general results, we now discuss several

concrete and instructive examples.
Non-Hermitian SSH models.—As a first example, we

study a non-Hermitian version of the SSH model [36],

where the Bloch Hamiltonian in Eq. (1) takes the concrete
form [15,18]

dxðkÞ ¼ t1þ t2 cosðkÞ; dyðkÞ ¼ i
γ

2
þ t2 sinðkÞ; dz ¼ 0;

ð8Þ
which gives f� ¼ t1 ∓ γ=2 and g� ¼ t2. This model has a
chiral symmetry, σzHkσz ¼ −Hk, which means the eigen-
values appear in pairs ðEn;−EnÞ which is crucial for the
appearance of protected zero-energy boundary modes both
in Hermitian and in the present non-Hermitian systems. We
find four EPs: t1 ¼ �γ=2 − t2 at k ¼ 0 and t1 ¼ �γ=2þ t2
at k ¼ π. For open boundary conditions, we find rR ¼
−ðt1 − γ=2Þ=t2 and rL ¼ −ðt1 þ γ=2Þ=t2 leading to
r�LrR ¼ ðt21 − γ2=4Þ=t22, and the bulk zero mode appears
when Eq. (6) is satisfied, i.e.,

t1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2

4
þ t22

r
; �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2

4
− t22

r
: ð9Þ

By comparing the energy spectra with open (blue) and
periodic (gray) boundaries for a chain with an integer
number of unit cells in Fig. 1, we observe a striking
confirmation of our prediction: while the biorthogonal
bulk-boundary correspondence holds true, the periodic
spectra exhibit a gap closing at very different parameter
values [41], thus highlighting the breakdown of the conven-
tional bulk-boundary correspondence. We note that, by
coincidence, the EPs of the periodic system coincide with
the points where jrRj ¼ 1 and jrLj ¼ 1, although there is no
such generic correspondence. We also note that the zero
energy property of the boundary modes is a direct conse-
quence of the chiral symmetry.
An alternative PT -symmetric non-Hermitian SSH

chain with dxðkÞ ¼ t1 þ t2 cosðkÞ, dyðkÞ ¼ t2 sinðkÞ and
dz ¼ iγ=2, i.e., rR ¼ rL ¼ −t1=t2 and, thus, jψRi ¼ jψLi,
where the non-Hermiticity is included as a staggering
potential instead of a hopping term [20], was experimen-
tally realized in Ref. [30]. This model is special in the sense
that it features gapless regions consistent both with analysis
of periodic systems as well as with our prediction for the
gap closing at jr�LrRj ¼ 1, i.e., t1 ¼ �t2.
Two-dimensional chiral states.—To further emphasize

the generality of our approach, we study the two-
dimensional Rice-Mele model [37] with non-Hermitian
hopping terms of which a different version is studied in
Ref. [25]. This model exhibits a non-Hermitian analogue of
a Chern insulator phase with chiral edge states. The Bloch
Hamiltonian is given by Eq. (1) with

dxðkÞ ¼ tþðkxÞ þ t−ðkxÞ cosðkyÞ;
dyðkÞ ¼ t−ðkxÞ sinðkyÞ þ i

γ

2
;

dzðkÞ ¼ t0ðkxÞ; ð10Þ
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where t�ðkxÞ ¼ t1 � δ cosðkxÞ and t0ðkxÞ ¼ −Δ sinðkxÞ.
The sites A and B from the previously discussed 1D
system now correspond to 1D chains, which together
form a 2D lattice. In the periodic bulk EPs occur for
sinðkxÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2=4 − 4t21Þ=Δ2

p
at ky ¼ 0 and sinðkxÞ ¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ2=4 − 4δ2Þ=ðΔ2 − 4δ2Þ

p
at ky ¼ π. For open boun-

dary conditions in the y direction the exact wave-function
solutions are given in Eqs. (3) and (4) with rR ¼
−½tþðkxÞ − γ=2�=t−ðkxÞ and rL¼−½tþðkxÞþγ=2�=t−ðkxÞ,
such that Eq. (5) [or, equivalently, Eq. (6)] yields

cosðkxÞ ¼
γ2

16t1δ
; �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2=8 − t21

δ2

s
; ð11Þ

where P jumps.
Saliently, the (non)existence of solutions in Eq. (11)

provide key information about the phase diagram of the
open system—only when such solutions exist, there are
chiral edge states connecting the valence and conduction
bands leading to the phase diagram in Fig. 2(a). It follows
that the region without solutions, labeled “0” in the phase
diagram, is always separated from the other regions by
closing of the bulk energy gap. These simple but striking
conclusions are fully supported by our numerical simu-
lations [42].
The energy spectrum for a system with an odd number of

A and B chains and a choice of parameters yielding six
solutions to Eq. (11) is displayed in Fig. 2(b). It is evident
that, again, the open and closed systems are qualitatively
different: the periodic system is semimetallic with bulk gap
closings as a function of kx (shown in grey) while the
open system bulk spectrum (blue) remains gapped and is
accompanied by the exactly solvable chiral edge state with

energy EðkxÞ ¼ dzðkxÞ ¼ −Δ sinðkxÞ shown in red. The
biorthogonal polarization, P, reveals that the right (left)
mover is localized to the edge n ¼ 1 (n ¼ N) and accu-
rately predicts the six kx values where the chiral band
merges with the bulk via Eq. (11). If we instead consider a
model with an even number of A and B chains, there is both
a left and right mover in the region where P ¼ 1 and no
states in the gap when P ¼ 0 in accordance with our
general prediction [42].
Stability and domain wall zero-modes.—We now address

the stability of the discussed open boundary physics. For
concreteness, we focus our discussion on the non-
Hermitian SSH model in Eq. (8). As mentioned before,
the bulk spectrum behaves discontinuously when going
from closed to open boundary conditions in the thermo-
dynamic limit. This can be intuitively understood from the
non-Hermitian skin effect, meaning that a macroscopic
number of eigenmodes pile up exponentially close to the
boundary. More formally, by introducing a term Γ that
rescales the hopping between the ends of the chain, such
that the chain is open when Γ ¼ 0 and periodic when Γ ¼ 1
[13], we find that there is an exceptional point at Γ ¼ 0 in
the thermodynamic limit and that in finite systems there is a
characteristic scale Γc ∝ e−αN , with α ≈ 0.58 for the
parameters used in Fig. 1, which marks the crossover to
the periodic boundary physics. Since Γc is exponentially
small in the system size [42], it is natural to ask how
relevant the open boundary physics actually is for realistic
setups, and for domain walls between different phases
rather than sharp boundaries. This is a subtle issue since the
coupling between the two ends in an experimental setup
also is naturally exponentially small in the separation
between ends. Thus it becomes a question of competing
energy scales whether the qualitatively different open or
closed scenario, each predicting boundary modes in a quite
different parameter regime, describes the system. To under-
stand this crossover microscopically, we consider a system
in ring geometry with two distinct domains α and β, with α
consisting of Nα unit cells representing the non-Hermitian
model of interest, and β with Nβ unit cells corresponding to
a trivial Hermitian chain that is gapped and has no zero
modes. In this scenario, the end modes of the non-
Hermitian chain enter the Hermitian chain with an expo-
nentially decaying tail, whose width is set by the gap in the
spectrum of the Hermitian chain, and which defines an
effective amplitude τβ for the domain-wall zero mode of
leaking through domain β. If the gap in the spectrum of
domain β is large enough, τβ < Γc, and the open system
physics prevails. However, if domain β is more penetrable
such that τβ > Γc, the zero modes can pass through the
Hermitian chain and periodic physics is restored [42].
Remarkably, this provides a simple experimental knob to
tune the system through the exceptional point at Γc.
Concluding discussion.—In this work, we have system-

atically addressed the issue of qualitative changes to the

FIG. 2. Non-Hermitian Chern insulators. (a) The bulk phase
diagram at δ ¼ Δ ¼ 1 where the different regions are labeled by
the number of solutions of Eq. (11). Chiral edge states occur
when this number is nonzero. (b) The absolute value of the energy
spectrum—periodic in gray and open in blue and red—of the
non-Hermitian Rice-Mele model as a function of kx, with
t1 ¼ Δ ¼ δ ¼ 1, γ ¼ 3, and N ¼ 46. The open system has
odd length with a broken unit cell at n ¼ 46. P jumps precisely
when the chiral mode (red) enters the bulk spectrum (blue) but
away from the periodic EPs.
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bulk-boundary correspondence in non-Hermitian models,
where closed and open systems can exhibit glaringly
different bulk spectra. In particular, we introduced and
studied with several concrete examples a new quantity
coined the biorthogonal polarization [see Eq. (7)] that
predicts band-touching points in systems with open boun-
daries, where the number of boundary or domain-wall zero
modes changes. To illustrate our general conclusions we
have studied lattice models with exactly solvable boundary
modes, and explicitly shown that the biorthogonal polari-
zation P exhibits a jump precisely when boundary modes
are attached to or detach from the bulk spectrum. These
transitions in the open system are found to generally
decouple from the individual properties of the left and
right eigenstates, as well as of the Bloch bands in the closed
periodic systems, leading to strikingly different phase
diagrams. Furthermore, effectively interpolating between
open and periodic boundary conditions in closed geom-
etries with two inequivalent domains, we have achieved a
conclusive understanding of the subtle crossover between
open boundary and periodic boundary physics.
Recently, various bulk topological invariants have been

defined for non-Hermitian Bloch Hamiltonians of periodic
systems, some also using the framework of biorthogonal
quantum mechanics [16–18,20,21,24–26]. However, boun-
dary modes are found in parameter regimes that can
drastically differ from the predictions of such bulk topo-
logical phase diagrams of periodic systems. Progress
towards addressing these issues was very recently reported
in Refs. [14,15], which put forward an ad hoc hybrid
construction of quantities obtained by supplementing the
Bloch states with information numerically extracted from
the open boundary eigenstates. Our present analysis settles
this controversial discussion of the bulk-boundary corre-
spondence in non-Hermitian systems by first providing a
universal quantity that accurately predicts bulk transitions
in systems with open boundaries that are associated with
the (dis)appearance of boundary modes.
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