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We report the experimental observation of commensurability oscillations (COs) in 1D graphene
superlattices. The widely tunable periodic potential modulation in hBN-encapsulated graphene is generated
via the interplay of nanopatterned few-layer graphene acting as a local bottom gate and a global Si back
gate. The longitudinal magnetoresistance shows pronounced COs when the sample is tuned into the
unipolar transport regime. We observe up to six CO minima, providing evidence for a long mean free path
despite the potential modulation. Comparison to existing theories shows that small-angle scattering is
dominant in hBN/graphene/hBN heterostructures. We observe robust COs persisting to temperatures
exceeding T ¼ 150 K. At high temperatures, we find deviations from the predicted T dependence, which
we ascribe to electron-electron scattering.
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Due to its high intrinsic mobility [1], graphene is an
ideal material for exploring ballistic phenomena. Both
suspended graphene [2,3] and graphene/hexagonal boron
nitride (hBN) heterostructures [4,5] were employed to
demonstrate integer and fractional quantum Hall effects
[6–9], conductance quantization [10,11], cyclotron orbits
[12–15], and ballistic effects at p-n junctions [16–18], all
requiring high mobility.
In particular, several fascinating observations have been

made in moiré superlattices in graphene/hBN heterostruc-
tures. In addition to magnetotransport signatures [19–21] of
the fractal energy spectrum predicted by Hofstadter [22],
Krishna Kumar et al. recently reported robust 1=B periodic
oscillations persisting to above room temperature [23].
Those oscillations were ascribed to band conductivity in
superlattice-induced minibands, where the group velocity
in those minibands enters into the magnetoconductance.
Here, the oscillation period is independent of the carrier
density and set only by the lattice spacing a via Φ0=Φ,
where Φ0 is the magnetic flux quantum and Φ the flux
through one superlattice unit cell.
However, the archetypal effect where a superlattice poten-

tial leads to magnetoresistance oscillations due to miniband
conductivity, namelyWeiss or commensurability oscillations
(CO) [24], has not yet been demonstrated in graphene, owing
to the challenging task of combining high-mobility graphene
and a weak nanometer-scale periodic potential. Those oscil-
lations arise due to the interplay between the cyclotron orbits
of electrons in a high magnetic field and the superlattice
potential. For a 1D modulation, pronounced 1=B-periodic
oscillations in the magnetoresistance Rxx are observed, with

minima appearing whenever the cyclotron diameter 2rC is a
multiple of the lattice period a, following the relation

2rC ¼
�
λ −

1

4

�
a; ð1Þ

with λ beingan integer. This intuitive picturewas confirmed in
Beenakker’s semiclassical treatment [25]. Quantum mechan-
ically, without modulation and in a high magnetic field,
Landau levels are highly degenerate in the quantum number
ky. The superlattice potential lifts the degeneracy and intro-
duces a miniband dispersion ENðkyÞ into each Landau level.
Theminibandwidth oscillates with both 1=B and energy, and
flat bands appear whenever Eq. (1) is fulfilled. Therefore, the
group velocity vg ¼ ∂EN=∂kyð1=ℏÞ also oscillates, leading
to magnetoconductance oscillations [26,27]. Those oscilla-
tions persist to higher temperatures than Shubnikov–de Haas
oscillations (SdHO), since the band conductivity survives
thermal broadening of the density of states. In contrast to the
oscillations in Ref. [23], the COs depend on the electron
density n through rC ¼ ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πn=ðgsgvÞ

p
=eB, where gs (gv) is

the spin (valley) degeneracy.The commensurability condition
in Eq. (1) also holds in the case of graphene [28,29]. What is
different, though, is the Landau level spectrum, which is
equidistant in the case of a conventional 2DEG but has a
square-root dependence in the case of the Dirac fermions in
graphene [30,31]. This has been predicted to also modify the
COs [28,29,32]. Notably,Matulis and Peeters calculated very
robust COs in the quasiclassical region of small fields that
should persist up to high temperatures [28].
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Here we employ a patterned few-layer graphene back-
gating scheme [33,34] to demonstrate clear-cut COs of both
Dirac electrons and holes in high-mobility graphene,
subjected to a weak unidirectional periodic potential.
Contrary to hBN/graphene moiré lattices, where lattice
parameters are set by the materials properties of graphene
and hBN, this enables us to define an arbitrary superlattice
geometry and strength. As the usual technique of placing a
metallic grating with nanoscale periodicity fails due to the
poor adhesion of metal to the atomically smooth and inert
hBN surface, we resort to including a patterned bottom gate
(PBG) consisting of few-layer graphene (FLG) carrying the
desired superlattice pattern into the usual van der Waals
stacking and edge-contacting technique [5]. The hBN/
graphene/hBN stack is assembled on top of the PBG.
Importantly, the bottom hBN layer has to be kept very thin
(< 15 nm) to impose the periodic potential effectively onto
the unpatterned graphene sheet. For the PBG, we exfoliated
a FLG sheet (3 to 4 layers) onto an oxidized, highly
p-doped silicon wafer which served as a uniform global
back gate in the measurements. The FLG sheet was
patterned into the desired shape by electron beam lithog-
raphy and oxygen plasma etching. This approach exploits
the atomic flatness of FLG, which makes it a perfect gate
electrode for 2D-material heterostructures that can be easily
etched into various shapes, e.g., 1D or 2D superlattices,
split gates, collimators [35], or lenses [36], and allows for
nanoscale manipulation of the carrier density. Figure 1(a)
shows the AFM image of an 80-nm-stripe lattice used for
the fabrication of sample B, discussed below. The hBN/
graphene/hBN stack was deposited onto the PBG, and a
mesa was defined by reactive ion etching [Fig. 1(b)]. We
used a sequential etching method, employing SF6 [37],
O2, and CHF3=O2 processes, in order to avoid damage to
the thin hBN bottom layer covering the PBG (see the
Supplemental Material [38] for details). Edge contacts of
evaporated Cr=Au (1 nm=90 nm) were deposited after
reactive ion etching of the contact region and a brief
exposure to oxygen plasma. More details on the fabrication
are reported elsewhere [34].
The combined action of PBG and the global gate is

sketched in Fig. 1(c). The PBG partially screens the electric
field lines emerging from the Si back gate. The latter
therefore controls the carrier type and density in the regions
between stripes (labeled n), whereas the PBG itself controls
primarily those directly above the stripes (labeled n0). A
typical charge-carrier density profile for a weak potential
modulation in the unipolar transport regime is shown atop.
Hence, tuning both gates separately, we can generate
unipolar or bipolar potential modulation on the nanoscale.
Transport measurements were performed in a helium

cryostat at temperatures between 1.4 and 200 K and in
perpendicular magnetic fields between 0 and 10 T using
low-frequency lock-in techniques at a bias current of
10 nA. We present data from two samples (A and B) with

1D-superlattice periods of aA ¼ 200 nm and aB ¼ 80 nm,
respectively. The PBGs of both samples, A and B, consist of
19 and 40 stripes of few-layer graphene (thickness 3 to 4
layers), respectively. The thicknesses of the lower hBN,
separating the graphene from the PBG, are tA ¼ 13 nm and
tB ¼ 2 nm, respectively, measured with AFM. Figure 1(d)
displays the zero-field resistance of sample A. Using both
gates, we can tune into the unipolar regime of compara-
tively low resistance (labeled nn0 and pp0), as well as the
bipolar regime (labeled pn0 and np0), where pronounced
Fabry-Pérot oscillations appear [16,34,39–42]. Their regu-
lar shape proves the high quality and uniformity of the
superlattice potential. The electrostatics of dual gated
samples and different transport regimes were discussed,
e.g., in Refs. [16,34,40,42].
Below, we focus on the unipolar regime, to obtain a

weak and tunable 1D superlattice. This is the regime of the
COs outlined above. Let us first discuss magnetotransport
in sample A with mobility μ ≈ 55 000 cm2=Vs (see the

(a) (b)

(c) (d)

FIG. 1. Sample geometry and characteristics. (a) AFM image of
the PBG of sample B. (b) hBN/graphene/hBN heterostructure on
top of a few-layer graphene patterned bottom gate after mesa
etching, before contact deposition (sample B, PBG outlined in
black, lower hBN outlined in white). Labels 1, 2, and 3 denote the
modulated, the unmodulated, and the reference area, respectively
(see text). (c) Schematic longitudinal section of the sample
geometry, showing the influence of the two independent gates
on the graphene charge-carrier density in the case of a unipolar
modulation. (d) Resistance map of sample A as a function of gate
voltages, Vp (PBG) and Vg (back gate) at B ¼ 0. The highly
regular Fabry-Pérot pattern in the bipolar regions confirms the
presence of identical barriers, forming a superlattice. The white
dashed line in the nn0 quadrant represents the n ¼ n0 configu-
ration of the two independent gates. The configurations, marked
by stars, will be addressed in the text and Fig. 2.
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Supplemental Material [38] for the determination of mobility
in both samples). In Figs. 2(a)–2(c), we show three magnetic
field sweeps, where we keep the PBG voltage fixed at Vp ¼
0.9 V and tune the modulation strength by varying the back-
gate voltage Vg. The sweeps represent three different sit-
uations: (a) n < n0, (b) n ≈ n0, and (c) n > n0. The corre-
spondingVg,Vp positions of the sweeps [(a)–(c)] aremarked
by stars in thenn0 quadrant of Fig. 1(d).Moreover, the inset in
Fig. 2(b) shows the corresponding charge-carrier density
profiles that were calculated employing a 1D electrostatic
model of the device, including a quantum capacitance
correction [40,43], but neglecting screening.
In Fig. 2(a), a weak, unipolar (n < n0) potential modu-

lation is shown where the longitudinal resistance Rxx
exhibits well-pronounced peaks and dips prior to the
emergence of SdHOs, appearing at slightly higher B fields.
The average charge-carrier density, extracted from SdHOs
is 1.0 × 1012 cm−2 for this particular gate configuration,

yielding a mean free path lf ¼ ℏkFμ=e ¼ 0.64 μm. The
expected flat band positions [Eq. (1)] are denoted by the
blue vertical dotted lines, perfectly describing the exper-
imentally observed minima. The dips are resolved up to
λ ¼ 3, corresponding to a cyclotron orbit circumference of
2πrC ¼ 1.7μm. This clearly confirms that ballistic transport
is maintained over several periods of the superlattice.
At Vg ¼ 15 V (Fig. 2(b)), n ≈ n0 holds (see inset in

Fig. 2(b)). We still observe clear SdHOs, but the COs
disappeared. The pronounced peak at ∼� 0.16 T can be
attributed to a magneto-size effect related to boundary
scattering in ballistic conductors [44,45] of widthW. While
in GaAs based 2DEGs, a ratio W=rC ≈ 0.5 is found, we
extract W=rC ≈ 1 in accordance with previous studies on
graphene [46].
Further increasing Vg increases n and switches the

modulation on again (n > n0). The SdHOs in Fig. 2(c)
yield an average n ¼ 1.3 × 1012 cm−2. Again, three min-
ima appear at the expected flat band condition described
by Eq. (1).
Let us turn to sample B, where we demonstrate COs in

the p regime. It has a short period of aB ¼ 80 nm and a
bottom hBN flake of only 2 nm thickness, separating the
PBG from the graphene. Figures 2(d) and 2(e) show the
longitudinal resistance at high average hole densities
(−n ¼ p ≈ 4.5 × 1012 cm−2) as a function of the PBG
voltage Vp and the perpendicular B field at fixed Vg ¼
−25 V (Dirac point at Vg ¼ 40 V) and T ¼ 40 K. Here, T
was increased in order to damp the SdHOs for better
resolution of the COs. The mobility of μ ¼ 30 000 cm2=V s
and the rather large hole density p give rise to a mean free
path lf ≈ 0.75 μm. We can resolve COs up to λ ¼ 6 [see
Fig. 2(f) [47] ], corresponding to a cyclotron orbit circum-
ference of 2πrC ¼ 1.4 μm, which is about twice lf in the
average density range considered. At around Vp ∼ −0.6 V,
the COs disappear as the modulation potential becomes
minimal [blue lines in Figs. 2(d) and 2(e), cf. charge-carrier
density profile in the inset]. Here, p ≈ p0 holds and no COs
are resolvable. This changes again at Vp ¼ −0.6… − 1.2 V
[Fig. 2(e)]. As the back-gate voltage is further increased,
strong COs appear again, with the minima positions
shifting according to the density dependence of Eq. (1)
(see also the Supplemental Material [38] for a color map).
The observation of clear-cut COs in density-modulated
hole and electron systems for distinctively different super-
lattice periods highlights the suitability of graphene PBGs
for imposing lateral potentials on graphene films.
As pointed out in the Introduction, theory predicted

enhanced COs in graphene [28]. To check this and to
compare theory and experiment, we apply the different
prevailing theoretical models to describe RxxðBÞ for our
sample. The amplitude of the COs is governed by the
period a, the modulation amplitude V0, and the Drude
transport relaxation time τp. Expressions for the additional
band conductivity Δσyy for 2DEG in Ref. [48] and

p=4.8 x 1012cm-2
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FIG. 2. Commensurability oscillations in graphene. (a)–(c)
Magnetoresistance of sample A (aA ¼ 200 nm) at T ¼ 1.5 K
for fixed Vp ¼ 0.9 V and Vg ¼ 10, 15, 20 V, respectively. The
densities n were extracted from SdHOs at higher fields. Vertical
blue lines: Calculated flat band position [Eq. (1)]. The COs
appear for weak modulation (a),(c) and disappear in the demodu-
lated situation (b). The inset in (b) shows the calculated charge-
carrier density profiles for blue Vg ¼ 5…25 V, where situations
(a)–(c) are represented by colors. (d),(e) Magnetoresistance of
sample B (aB ¼ 80 nm) at T ¼ 40 K and fixed Vg ¼ −25 V,
with (d) Vp ¼ 0… − 0.6 V and (e) Vp ¼ −0.6… − 1.2 V.
(f) T ¼ 1.5 K, where minima up to λ ¼ 6 are resolvable. Inset
in (e): 1D charge-carrier density distribution (units of 1012 cm−2)
for Vp ¼ −0.3… − 1.2 V, where gate configurations in (d)–(f)
are represented by colors.
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graphene in Ref. [28] [see Eqs. (S1) and (S9) in the
Supplemental Material [38], respectively] are linear in B
and tend to overestimate the CO amplitude at lower field.
Mirlin and Wölfle [49] introduced anisotropic scattering to
the problem by taking into account the small-angle impu-
rity scattering, allowing for a high ratio of the momentum
relaxation time τp to the elastic scattering time τe [see
Eq. (S10) in the Supplemental Material [38] ]. In this
approach, both the damping of COs at lower fields and the
modulation amplitudes of conventional 2DEGs are cor-
rectly described. For the graphene case, Matulis and Peeters
employed the Dirac-type Landau level spectrum, as
opposed to the parabolic 2DEG situation [28], leading to
a modified expression. In their approach, only a single
transport scattering time τp was included. The temperature
dependence of the COs was treated in Refs. [48,50]
for parabolic 2DEGs and in Ref. [28] for graphene. It is
expected to exhibit a x= sinhðxÞ-dependence, where
x ¼ T=Tc, with the critical temperature

Tc ¼
Bea
4π2kB

vF: ð2Þ

Here, kB is the Boltzmann constant, and the difference
between parabolic and linear dispersion is absorbed in the
different Fermi velocities vF.
To compare to the different theoretical models, we

extracted the elastic scattering time τe ¼ ð80� 10Þ fs
from the SdHO envelope [51] of a reference Hall bar
(see the Supplemental Material [38] for details). With
μ ¼ 30 000 cm2=V s, we obtain the ratio τp=τe ≈ 7.4,
which emphasizes the importance of small-angle scattering
in hBN-encapsulated graphene. The experimental (black)
curve in Fig. 3(a) was taken at T ¼ 40 K, where the SdHOs
are already visibly suppressed, but the amplitude of the
COs is practically unchanged, allowing for a better

comparison to theory. We first compare our measurement
to the graphene theory employing isotropic scattering only.
Since the superlattice period aB ¼ 80 nm, τp ¼ 0.59 ps,
temperature T ¼ 40 K, and the average charge-carrier
density p ¼ 2.8 × 1012 cm−2 are known, only the relative
modulation strength η ¼ V0=EF remains as a fitting
parameter. By fitting the theoretical expressions (for details,
see the Supplemental Material [38]) to the CO peak at ≈4 T
in Fig. 3(a), we obtain η ¼ 0.08. At lower fields, the
experimentally observed oscillations decay much faster
than the calculated ones. Inserting our sample parameters
into the theory employing small-angle impurity scattering
[49] [see Eq. (S10) in the Supplemental Material [38] ],
again only η ¼ V0=EF remains as a free-fitting parameter,
and we obtain the red trace using η ¼ 0.2. The fit describes
the experimental magnetoresistance strikingly well,
although the Dirac nature of the spectrum was not con-
sidered. The fits in Fig. 3(a) imply that including small-
angle impurity scattering is essential for the correct
description of encapsulated graphene.
Finally, we discuss the temperature dependence of COs

in 1D modulated graphene. Figure 3(b) depicts a longi-
tudinal resistance trace of sample A at n ¼ 1.4 × 1012 cm2

different temperatures. The graph clearly demonstrates that
the COs are much more robust than the SdHOs. While the
latter are almost completely suppressed at T ¼ 40 K, the
COs survive at least up to T ¼ 150 K (sample A) and T ¼
200 K (sample B). We analyze the temperature evolution of
the first two CO peaks (marked by red triangles), using the
connecting line between two adjacent minima as the
bottom line to evaluate the height of the maximum in
between. We adopt this procedure described by Beton et al.
for a better comparison to experiments in GaAs [50].
The temperature dependence of the two peaks is shown
in Fig. 4(a). Also shown are the corresponding data of
sample B (black symbols). The data for sample B were
extracted at much higher fields, due to the smaller lattice
period and higher carrier density, leading to a weaker
temperature dependence in Eq. (2). The expected temper-
ature dependence (solid lines) ðT=TcÞ= sinhðT=TcÞ
[28,48,50] clearly deviates from the experimental data
points. For GaAs, T-dependent damping of the COs was
so strong that the assumption of a T-independent scattering
timewas justified [50]. In graphene, the higher vF leads to a
higher Tc, and therefore the COs persist to higher temper-
atures than in GaAs. Hence, we have to consider a T
dependence of the scattering time as well. Using the low-
temperature momentum relaxation time τp, we first deter-
mine the modulation strength η, Then, using a fixed η,
we extract the scattering time τ entering into the CO theory
at elevated temperatures. The extracted times are plotted
in Fig. 4(b) for both samples and two magnetic fields
each, together with predictions for the electron-electron
scattering time [52] and electron-phonon scattering time
[53]. Clearly, at T ≫ 10 K, τ deviates visibly from τp, with
τe−e being the relevant cutoff, while τe−ph is not important.
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FIG. 3. (a) Comparison of different theoretical expressions with
experiment at Vg ¼ −25 V, Vp ¼ −0.8 V, and T ¼ 40 K (black
curve). The blue curve represents the theory for graphene [28]
with isotropic scattering and η ¼ 0.08. The red curve includes
small-angle impurity scattering [49], using η ¼ 0.2, and matches
the experiment well. The experimental curve does not show a
pronounced minimum around 6 T due to strong SdHOs setting in.
(b) Longitudinal magnetoresistance of sample A at Vg ¼ 25 V
and Vp ¼ 0.9 V at different temperatures, from 1.5 to 155 K.
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This resembles the recently found observation window for
hydrodynamic effects in graphene [54].
To conclude, we present the first experimental evidence of

commensurability oscillations (COs) [24] for both electrons
and holes in a hBN-encapsulated monolayer graphene
subject to a 1D periodic potential. This was made possible
through the combined action of a nanopatterned FLG bottom
gate and a global Si back gate. Our approach allows tuning
both carrier density and modulation strength independently
in a wide range, and on the scale of a few tens of nanometers.
The minima in RxxðBÞ are well described by the flat band
condition [Eq. (1)]. The predicted strong temperature robust-
ness of COs in graphene was qualitatively confirmed, but
detailed comparison to existing theories emphasized the
need for a description including anisotropic scattering of
charge carriers in encapsulated graphene. Using data at
elevated temperature, we could extract the T dependence of
the scattering time, pointing to electron-electron scattering as
the high-T cutoff for the CO amplitude.
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