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Awide variety of two-dimensional electron systems allow for independent control of the total and relative
charge density of two-component fractional quantum Hall (FQH) states. In particular, a recent experiment
on bilayer graphene (BLG) observed a continuous transition between a compressible and incompressible
phase at total filling νT ¼ 1

2
as charge is transferred between the layers, with the remarkable property that the

incompressible phase has a finite interlayer polarizability. We argue that this occurs because the topological
order of νT ¼ 1

2
systems supports a novel type of interlayer exciton that carries Fermi statistics. If the

fermionic excitons are lower in energy than the conventional bosonic excitons (i.e., electron-hole pairs),
they can form an emergent neutral Fermi surface, providing a possible explanation of an incompressible yet
polarizable state at νT ¼ 1

2
. We perform exact diagonalization studies that demonstrate that fermionic

excitons are indeed lower in energy than bosonic excitons. This suggests that a “topological exciton metal”
hidden inside a FQH insulator may have been realized experimentally in BLG.We discuss several detection
schemes by which the topological exciton metal can be experimentally probed.

DOI: 10.1103/PhysRevLett.121.026603

Two-component quantum Hall systems have long been
known to host rich phase diagrams, exhibiting intrinsically
two-component fractional quantum Hall (FQH) states,
broken symmetry states, and quantum phase transitions
at fixed total filling fraction νT [1–3]. When tunneling
between the components is effectively zero, the system
acquires an enhanced total and relative Uð1ÞT × Uð1Þr
symmetry due to the independently conserved charges of
the two components. This situation is most easily realized
when the two components are related by spin or valley
symmetry [4–8], or in double layer systems in which a
barrier suppresses interlayer tunneling [9,10].
A number of experimental platforms have been used to

study the resulting phase diagram of two-component FQH
phases at νT ¼ 1

2
, including wide quantum wells [11–14],

ZnO heterostructures [8,15], and, most recently, bilayer
graphene (BLG), where the two components correspond to
the layer [16]. In many of these systems the relative filling
νþ − ν− of the two components can be tuned in situ. In
particular, Ref. [16] has reported the remarkable exper-
imental observation of a BLG state at νT ¼ 1

2
that is

incompressible, yet possesses a finite interlayer polariz-
ability. This insulating state persists over the range of
interlayer polarization νþ − ν− ≈ 0–0.18, which is strik-
ingly large when compared with the typical width of FQH

plateaux. In the presence of Uð1Þr, finite polarizability
indicates a vanishing neutral gap and hence hints at the
discovery of a new phase of matter distinct from a fully
gapped quantized Hall state.
In this Letter, we address this experimental finding by

analyzing the possible phases that can occur in a two-
component system at νT ¼ 1

2
as density is transferred

between the two components. TheUð1Þr symmetry ensures
that intercomponent excitons can exist as long-lived exci-
tations. We argue that the experimental observations of
Ref. [16] could be explained by a FQH insulator whose
interlayer excitons have delocalized into a degenerate
quantum liquid.
The problem is particularly rich at νT ¼ 1

2
because the

fractionalized nature of even-denominator FQH states
guarantees that in addition to the familiar bosonic exciton
(b-exc), the system also hosts a topologically nontrivial
fermionic exciton (f-exc). If the f-exc is lower in energy,
the system naturally forms a “topological exciton metal”
at finite f-exc density. This new phase of matter would
exhibit insulating charge transport but metallic counterflow
resistance.
We consider two main scenarios. First we discuss

systems in which the two components arise from a crossing
between an N ¼ 0 and N ¼ 1 Landau level (LL) in the
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limit where the distance d between them is small compared
to the magnetic length lB, as occurs in ZnO [8], wide
quantum wells [12], and BLG [16]. Our exact diagonaliza-
tion calculations show that the f-exc is indeed lower in
energy than the b-exc. In the second scenario, relevant to a
bilayer with d=lB ≳ 1, we consider a crossing of two
N ¼ 0 levels, where we also argue that the f-exc will
determine the nature of the intermediate phase.
ðNþ; N−Þ ¼ ð1; 0Þ: the Pfaffian exciton metal.—In the

experiment of Ref. [16], an electric field perpendicular to
the bilayer causes the first excited Nþ ¼ 1 LL in the top
layer to cross in energy with the lowest N− ¼ 0 LL in the
bottom layer. The filling fraction of the two layers is
νþ ¼ 1=2 − δ and ν− ¼ δ. Because Nþ ¼ 1, when δ ¼ 0
the system is observed to form an incompressible FQH
state in the top layer, roughly analogous to the 5=2 plateau
of GaAs [17]. Based on numerical evidence [16,18] as well
as the recent experimental observation of a half-integer
thermal Hall effect [19], we assume that the system forms
a Moore-Read Pfaffian state [20]. However, all even-
denominator states must contain a charge −e boson, so
they will lead to essentially the same conclusions. When
δ ¼ 1=2, the particles reside in an N− ¼ 0 level, so the
system forms a compressible composite Fermi liquid
[21–23].
What is the fate of the system at intermediate δ? As δ

increases from zero, the top layer loses charge to the bottom
layer. Because of the strong Coulomb interaction between
layers, excitons will form, with −e charge in the top layer
and e charge in the bottom layer, with a binding energy on
the order of the interlayer Coulomb interaction. Crucially,
at νT ¼ 1

2
, this system supports two topologically distinct

types of excitons. The conventional bosonic exciton (b-exc)
is formed when an electron is transferred from the Pfaffian
state in the top layer to the bottom layer. On the other hand,
the Pfaffian state also has a charge −e bosonic excitation,
which can be thought of as a Laughlin quasiparticle
associated with inserting two flux quanta into the system.
A bound state of the charge −e boson in the top Pfaffian
layer and an electron in the bottom is a fermionic exciton
(f-exc). In contrast to the b-exc, the f-exc is a topologi-
cally nontrivial quasiparticle; it can also be thought of as a
bound state of the b-exc and the anyonic “neutral fermion”
ψNF of the Pfaffian phase. As we will demonstrate within
the long wavelength effective field theory, this f-exc is
coupled to an emergent Z2 gauge field. A pair of f-exc’s is
topologically equivalent to a pair of b-exc’s.
Because excitons are neutral particles, they have some

nonzero dispersion ϵðkÞ and can delocalize. If the excitons
attract, there may be an instability and the transition will be
discontinuous, but otherwise we can consider three types of
ground states for the excitons: density wave, condensate,
and metal [24]. First, depending on the interactions
between the excitons, it may be preferable for the excitons
to form a density-wave state, for example, stripes or a

Wigner crystal. In the presence of weak disorder that pins
the density wave, this state can be viewed as a localized
state of excitons, e.g., a Bose glass or Anderson insulator
for the b-exc, f-exc, respectively [25,26].
As the density of excitons increases with δ, the b-exc can

potentially undergo a quantum phase transition to a super-
fluid, spontaneously breaking Uð1Þr. Analogous to the
νT ¼ 1 exciton condensate [2,3], the condensation of the
b-exc leads to an interlayer coherent Moore-Read Pfaffian
state. Alternatively, if the f-exc are more stable, increasing
their density leads to a Fermi surface whose volume is set
by δ. In this case, the Pfaffian state coexists with a Fermi
surface of f-exc’s, leading to insulating charge transport
but metallic counterflow. There is no sharp transition
between the Anderson insulator state and the “metallic”
state of excitons because in two dimensions all states are
localized by disorder. At finite temperature there is a
crossover from the localized to the delocalized regime as
the temperature is increased, with a crossover temperature
T� ∼ e−ϵF=W , where ϵF is the Fermi energy and W is the
disorder strength [26].
Let us nowdescribe the above scenariomore concretely in

terms of a long wavelength effective field theory. cþ and c−
denote the electrons in the two layers. To describe the system
at νT ¼ 1=2, we attach two flux quanta to each electron, to
obtain composite fermions (CFs)ψþ andψ−. It is convenient
to describe this in terms of a parton construction (see, e.g.,
[27]) c� ¼ bψ�, whereb is a charge-e boson andψþ,ψ− are
the neutral CFs. b and ψ� carry charge 1 and −1, respec-
tively, under an internal emergent gauge field a, associated
with the phase rotations b → eiθb, ψ� → e−iθψ�, which
keep the physical electron operator invariant. Introducing
AT ¼ Aþ þ A− as an external probe gauge field for Uð1ÞT,
andAr ¼ ðAþ − A−Þ=2 as a probe gauge field for theUð1Þr,
the ψ� carry charge �1=2 under Ar.
Next, we assume a mean-field ansatz where b forms a

bosonic ν ¼ 1=2 Laughlin state and hai ¼ 0. The resulting
field theory can be written as

L ¼ −
2

4π
ã∂ãþ 1

2π
ðaþ ATÞ∂ãþ Lψ ðψ�; a; ArÞ: ð1Þ

Here, a∂a≡ ϵμνλaμ∂νaλ, ð1=2πÞϵμνλ∂νãλ is the conserved
current for the b particles and the first term on the rhs above
is the effective action for a bosonic 1=2 Laughlin FQH
state [28]:

Lψ ¼
X

α¼�

�
ψ†
αði∂t þ at þ αAr;t=2Þψα

þ 1

2mα
ψ†
αði∂i þ ai þ αAr;i=2Þ2ψα þ � � �

�
; ð2Þ

where � � � indicates higher order interactions among the
CFs. We can now consider a variety of possible mean-field
states for the CFs ψ�.
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(1) Two-component composite Fermi liquid.—Here, ψ�
both form a composite Fermi sea. This describes a
composite Fermi liquid state with two Fermi surfaces,
with Fermi wave vectors kF� ¼ l−1

B

ffiffiffiffiffiffiffiffi
2ν�

p
, where ν� is the

electron filling in the two layers. This phase is most natural
when ν− ∼ 1=2.
(2)Z2 fractionalized exciton metal.—We consider a state

where species ψþ forms a paired state hψþψþi ≠ 0
while ψ− continues to form a Fermi surface with kF− ¼
l−1
B

ffiffiffiffiffiffiffiffi
2ν−

p
. This breaks the Uð1Þ gauge symmetry down to

Z2, and the Higgs mechanism sets aþ Ar=2 ¼ 0. In the
limit ν− ¼ 0, we expect ψþ forms a px þ ipy state since the
system is described by a Moore-Read Pfaffian state in the
top layer [29,30].
As ν− is increased, the system is described by a Pfaffian

state in ψþ together with a Fermi sea of ψ−. Since we have
locked a ¼ −Ar=2, Eq. (2) implies that ψ− effectively
becomes coupled only to Ar, with unit charge. Physically,
this implies that ψ− is a fermion that carries a unit dipole
moment perpendicular to the layers and can thus be
identified with the f-exc. However, ψ− is still coupled
to an emergent Z2 gauge field, corresponding to the
remnant of a after the pairing of the ψþ fermions,
reminiscent of the “orthogonal metal” phase [31].
Importantly, the ψþ and ψ− fermions are both coupled
to this Z2 gauge field, so they are nontrivially entangled. In
particular, the f-exc will acquire a π phase upon encircling
the Pfaffian state’s non-Abelian charge e=4 quasiparticle;
hence, the f-exc will see any localized �e=4 quasiparticles
pinned to the disorder potential as sources of random
π flux.
A model wave function for this state can be

written as follows: ΨexFSðfzi;wagÞ¼PLLLψf-excðfragÞ×Q
a<bðwa−wbÞ2

Q
i;aðzi−waÞ2Pf½1=ðzi−zjÞ�

Q
i<jðzi−zjÞ2.

Here z and w are the complex coordinates of the
electrons in the top and bottom layers, respectively, with
wa ¼ ra;x þ ira;y. ψf-excðfragÞ is the wave function for the
excitons, which can be taken to be in a Fermi sea. PLLL
denotes projection to the lowest LL. While this wave
function is written as if both layers are in the lowest LL,
it should be transposed to the case in which the Pf layer is in
the first LL by acting with the LL raising operator on each z
electron

Q
i(∂zi − ðz̄i=4l2

BÞ).
(3) Interlayer coherent FQH states: exciton conden-

sates.—Both ψ� CFs can form a paired state hψþψþi ≠ 0,
hψ−ψ−i ≠ 0, which breaks Uð1Þr and gives interlayer
coherence. These phases thus have a Goldstone mode
and superfluidlike counterflow. We further distinguish two
cases:
(a) hψþψ−i ≠ 0.—In this case, since we also have

hψþψþi ≠ 0, we can treat hψþψ−i and hψ†
þψ−i as equiv-

alent. Since ψ†
þψ− carries unitUð1Þr charge, its expectation

value implies that the interlayer Uð1Þr is completely
broken, implying that the b-exc forms a condensate.

(b) hψþψ−i ¼ 0.—In this case, pairs of the f-exc
have condensed, implying that the interlayer Uð1Þr is
spontaneously broken down to Z2. This leaves behind a
mod-2 conservation law for the exciton number. Since pairs
of f-exc are topologically equivalent to pairs of b-exc, this
state can also be viewed as a state where pairs of b-exc have
condensed.
Note that in both cases (a) and (b), we can further

consider various types of paired states for the ψ� fermions,
e.g., whether they are weak or strong pairing super-
conductors [29]. Wave functions for these interlayer
coherent FQH states can be written as Ψðfxi; σigÞ ¼
Pf½gσiσjðri − rjÞ�

Q
i<jðxi − xjÞ2, where xi is now the com-

plex coordinate of the ith electron including both layers and
σi ¼ � is its layer index. gσiσjðri − rjÞ is the pair wave
function. For example, if we take gσiσjðri − rjÞ ¼
ðΔσσ0=xi − xjÞ, this would correspond to the case in which
hψσðkÞψσ0 ð−kÞi ¼ Δσσ0 ðkx þ ikyÞ.
(4) Pfaffian FQH states with localized excitons.—

Finally, we can consider a state in which ψþ is paired,
while the ψ− fermions form a density wave state or, in the
presence of disorder, are localized. This is the state that, in
the language of excitons used earlier, corresponds to a
Pfaffian FQH state in one layer with some density of
localized excitons. As explained above, this disordered
state is not a sharply distinct phase from the Z2 fraction-
alized exciton metal, but rather a different regime of the
same phase. The topological order of such a state is simply
that of the Pfaffian FQH state, regardless of whether the b-
exc or f-exc is lower in energy.
Exact diagonalization study of the Pfaffian state’s

exciton energies.—While we have enumerated several
possibilities, it is a matter of microscopic energetics which
one will actually occur. A comprehensive numerical inves-
tigation is presented in [32], but here we address the most
important question: does the b-exc or f-exc have lower
energy? We answer this question using the exact diago-
nalization of the Coulomb Hamiltonian on a sphere,
keeping both an N ¼ 0 and N ¼ 1 LL.
To explain the results in Fig. 1, we recall some facts

about the Pfaffian state on a sphere. The Pfaffian ground
state occurs when the number of electrons Ne and the
number of flux quanta Nϕ satisfy Nϕ ¼ 2Ne − 5. When Ne

is even, the sphere has a unique, gapped ground state. In the
top panel of Fig. 1(a), we show the energy per electron
EðN1¼Ne;N0¼0Þ=Ne when all electrons are in the N ¼ 1
layer. Calculations are done for the Coulomb interaction
with energies expressed in units of e2=ϵlB. Using standard
finite-size corrections [18,33] and linear extrapolation in
1=Ne for Ne even, we find the thermodynamic vacuum
energy per particle of the Pfaffian to be e0 ≈ −0.365.
However, when Ne is odd, there is a dispersing band of
low energy states [34,35]. This can be understood by
appealing to the “superconducting” nature of the Pfaffian
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phase [29]: when the number of CFs is odd, one CF
must remain as an unpaired Bogoliubov de-Gennes quasi-
particle, which is precisely the neutral fermion ψNF
excitation. By measuring the ground state energy
differences EðNeÞ − e0Ne, where Ne is odd and e0 is
the energy per electron in the thermodynamic limit [top
panel in Fig. 1(a)], we estimate the neutral fermion gap
ΔNF ∼ 0.018, in line with earlier studies [34,35].
A similar method can be used to measure the energy

difference between the f-exc and b-exc; see the bottom
panel of Fig. 1(a). Let EðN1; N0Þ be the ground state energy
for Ne¼N1þN0 electrons in the N ¼ 1, 0 levels, respec-
tively, keeping fixed the number of flux Nϕ ¼ 2Ne − 5.
The b-exc occurs when N0 ¼ 1 and Ne is even; in contrast,
the f-exc occurs whenN0 ¼ 1 andNe is odd. We define the
exciton energies by subtracting off the Pfaffian state’s
extrapolated vacuum energy e0 [18,33],

EexðNeÞ ¼ EðNe − 1; 1Þ − e0Ne: ð3Þ

The exciton energy EexðNeÞ also shows an odd-even effect,
Fig. 1(a), but in contrast to the vacuum, odd Ne (the f-exc)
is now lower in energy by Δb-exc − Δf-exc ≳ 0.02. Note that
since the b-exc can decay into an f-exc and a ψNF,
we do not expect to see a difference much greater than
ΔNF ≈ 0.018, though the energy of the metastable b-exc
may be larger.
To verify that the electron and hole are forming

a tightly bound exciton, we examine the interlayer pair
correlation function in the f-exc sector g01ðrÞ≡
A⟪n̂0ðrÞ½n̂1ð0Þ − n̄1�⟫, where n̄1 ¼ Ne=A is the average
density in the Pfaffian ground state and A is the area of the

sphere. The f-exc carries angular momentum L ¼ 3=2, so
the double brackets denote an average over the L multiplet.
We subtract n̄1 so that −

R
d2rg01ðrÞ ¼ 1, thus −g01ðrÞ can

be interpreted as the probability for the electron and hole to
be at distance r. As we see in Fig. 1(b), they indeed bind
together into an exciton of size ∼4lB.
In summary, exact diagonalization of the Coulomb

Hamiltonian shows that as the charge is transferred between
layers, the electrons and holes form tightly bound excitons
and the nontrivial f-exc is the lowest energy exciton. At
dilute exciton densities, this “single particle” energy will
dominate over interactions, indicating that a fermionic
exciton metal is more likely than a bosonic condensate.
A number of experimental signatures could be used to

distinguish these scenarios:
Counterflow.—Counterflow transport is a clear way to

distinguish between localized Bose or Fermi excitons,
interlayer coherent FQH states, and the exciton metal.
Assuming the ability to independently contact the two
layers, one can measure the counterflow conductivity:
jr ¼ σrEr, where jr ¼ jþ − j− is the relative current and
Er ¼ Eþ − E− is the difference in the electric field between
the two layers. When hψþψþi ≠ 0, jr is simply the current
of the ψ− fermions. The dc “counterflow conductivity” σr
will thus be zero, finite, or infinite, depending on whether
the b-exc have Bose condensed, the f-exc have formed a
Fermi sea (with temperature T greater than the localization
crossover scale), or the excitons have localized. A dis-
sipative counterflow conductivity, in an incompressible
FQH insulator, is a striking property of the exciton metal
state.
Polarizability.—The polarizability is defined as

limω→0;q→0hpðq;ωÞpð−q;−ωÞi, where pðx;tÞ¼nþðx;tÞ−
n−ðx;tÞ is the difference in density between the two
components. All states considered above have finite polar-
izability. When the excitons are localized by disorder in
either the bosonic or fermionic case, the polarizability is set
by the disorder strength; in the Bose exciton condensate
state it is set by the superfluid density, and in the exciton
Fermi sea it is set by the density of states at the Fermi
surface. The latter can be understood within the field theory
presented above: if hψþψþi ≠ 0, then ψ− is a f-exc,
p ∼ ψ†

−ψ− þ const, and polarizability is simply the com-
pressibility of the f-exc state. The exciton Fermi sea can be
distinguished by the temperature dependence of the polar-
izability or by the application of a periodic potential: when
the wave vector of the periodic potential becomes com-
mensurate with 2kF, Bragg scattering induces an exciton
band gap and modulates the polarizability.
Specific heat and thermal conductivity.—Another

distinguishing feature of the different exciton states
appears in the specific heat and the thermal conductivity.
The thermal conductivity of the exciton metal will be
linear in temperature: κ ∼ CvvFl ∼ T, where l is the
mean free path of the excitons, vF is their Fermi velocity,

(b)(a)

FIG. 1. (a) The top panel shows the energy per electron EðN1 ¼
Ne; N0 ¼ 0Þ=Ne → e0 when all electrons are in the N ¼ 1 layer.
The odd-even effect [36] confirms that the Pfaffian ground state
occurs for Ne even, while Ne odd corresponds to the ψNF excited
state. Extrapolating the energy difference in 1=Ne, we obtain the
neutral fermion gapΔNF ∼ 0.018. In the bottom panel, we transfer
one electron from the N ¼ 1 to the N ¼ 0 layer and measure the
energy relative to the vacuum, EexðNeÞ ¼ EðNe − 1; 1Þ − e0Ne.
There is again an odd-even effect, but reversed: the bosonic exciton
(blue, Ne ¼ 2m) is considerably higher in energy than the
fermionic exciton (red, Ne ¼ 2mþ 1). (b) The f-exc pair corre-
lation function between theN ¼ 0, 1 layers, g01ðrÞ, shows that the
electron and hole bind together into an exciton of size ∼4lB.
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and Cv ∼ T is the specific heat of the exciton Fermi surface.
Since such a state has zero electrical conductivity at
zero temperature, this would imply an infinite violation
of the Wiedemann-Franz law. In contrast, the thermal
conductivity of the exciton localized state κ → 0 at zero
temperature, although the specific heat is still expected to
be linear in T in this phase.
ðNþ; N−Þ ¼ ð0; 0Þ: (331) fractional exciton metal.—We

mention an alternative platform for an exciton metal. In
quantum Hall bilayers with d=lB > 1 at filling ðνþ; ν−Þ ¼
ð1=4; 1=4Þ, the bilayer can form a 331 state. This state has
been observed when both components partially fill the
N� ¼ 0 LL [3], although it may happen more generally.
What is the fate of the system in the intermediate regime
ðνþ; ν−Þ ¼ ð1=4þ δ; 1=4 − δÞ? The 331 state also pos-
sesses a f-exc, which contains charge e=2 and −e=2 in the
two layers. This is quite distinct from the scenario con-
sidered earlier, in which the f-exc in the Pfaffian state
contained charge e and −e in the two layers. Since the
b-exc has charge e and −e while the f-exc has charge e=2
and −e=2, we expect that the Coulomb repulsion would
cause the b-exc to be unstable to decaying into two f-exc’s.
As δ is tuned away from zero, the finite density of f-exc’s
can form a Fermi sea.
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