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We show that novel low temperature properties of bulk SmB6, including the sudden growth of the de
Haas–van Alphen (dHvA) amplitude (and heat capacity) at millikelvin temperatures and a previously
unreported linear-in-temperature bulk electrical conductivity at liquid helium temperatures, signal the
presence of a highly asymmetric nodal semimetal. We show that a highly asymmetric nodal semimetal is
also a predicted property of the Kondo lattice model (with dispersionless f-electron levels) in the presence
of Sm vacancies or other defects. We show it can result from a topological transformation of the type
recently considered by Shen and Fu and eliminates the necessity of a neutral Fermi surface for explaining
bulk dHvA oscillations in SmB6.
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There is growing interest in the suggestion that certain
members of the family of Kondo insulating compounds
exhibit a strongly correlated topological insulating state
[1–3], with electrical conduction taking place predomi-
nantly via the surface at low temperatures [4,5]. While the
discovery of the de Haas–van Alphen (dHvA) effect in
SmB6 was widely considered to confirm the existence of
pristine topologically protected surface metallic states [6,7],
the cleanliness of the surface states has been brought into
question by the absence of Shubnikov–de Haas oscillations
in the surface-dominated resistance [8]. In another set of
experiments [9,10], dHvA oscillations are reported to have
the characteristic magnetic field angular dependence of a
bulk three-dimensional Fermi surface, leading to speculation
over the possibility of the dHvA originating from novel
neutral quasiparticles [11–14]. Various alternative yet more
conventional explanations for the dHvA oscillations have
also been proposed [15–19]. A common feature of all the
proposed models, however, whether based on neutral or
conventional quasiparticles, is that they appear unable to
account for the sudden growth of the dHvA amplitude at
millikelvin temperatures originating from a three-dimen-
sional Fermi surface [10].
In this Letter, we present arguments for a highly

asymmetric nodal semimetal existing over certain regions
of momentum space in bulk SmB6, where the node is
pinned to the unhybridized f level. Our proposal is
motivated by two recent experimental observations. The
first is our finding that the dHvA effect [10] in SmB6 is
consistent with two channels of identical frequency and
similar mobility, but vastly different effective masses.
One of the channels is of light conduction electron
character, while the other is of heavy f-electron character
[see Fig. 1(a)]. The second experimental observation is that
the nonsaturating behavior of the resistivity plateau at
liquid helium temperatures is caused by a bulk linear-in-

temperature T contribution to the electrical conductivity
[see Fig. 1(b)]. We attribute the linear-in-T conductivity,
which is evident in published data from both floating zone
[20] and flux growth samples [21,22], to the thermal
activation of uniform mobility carriers across the node.
We propose the nodal semimetal to originate from defects
in the crystalline lattice, such as Sm vacancies [23].
The experimental evidence for a linear-in-T bulk

contribution to the electrical resistivity is presented in
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FIG. 1. (a) Temperature-dependent amplitude of the 330 T
dHvA frequency in SmB6 (black circles) together with a fit (blue
line) to AdHvAðTÞ¼AcRT;cþAfRT;f, in which RT;c¼Xc=sinhXc
and RT;f ¼ Xf= sinhXf are the thermal damping factors, Xc ¼
2π2m�

ckBT=ℏeB and Xf ¼ 2π2m�
fkBT=ℏeB, showing it to stem

from the superposition of conduction electronlike and f-electron-
like channels with effective masses m�

c and m�
f , respectively.

(Inset) The same fit with a logarithmic T axis. (b) Collapsed
curves of the low T region of the bulk conductance of SmB6,
inferred from Fig. 2(c), after subtracting the surface contribution
σsurf from each curve, with a dotted line extending to T ¼ 0 added
as a guide to the eye. (Inset) Similar collapsed curves from
Fig. 2(b).
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Figs. 1(b) and 2, where we have used a reciprocal resistivity
scale in order to display the resistivity in a manner that is
proportional to conductivity. Figure 2(a) shows the resis-
tivity of a floating zone grown sample [20], while Figs. 2(b)
and 2(c) show multiple curves of the resistance measured
on flux grown samples, where only the surface contribution
changes between vertically separated curves. A change in
the relative surface conduction is achieved in Fig. 2(b) by
progressively reducing the sample thickness and rescaling
the data at 20 K (where it is bulk dominated [21], therefore
making the bulk contributions the same), while this is
achieved in Fig. 2(c) by progressively increasing the depth
of surface radiation damage [22]. The simple manner in
which the curves are vertically offset means that the
conductance is dominated by a surface contribution σsurf
that is largely independent of T, thus confirming the
conclusions reached in Refs. [21,22]. The new observation
we make here is that the slope within the plateau region is
invariant to changes in the surface conductance, revealing it
to be of bulk origin. The low temperature resistivity
therefore has the approximate form

ρðTÞ ≈ 1

σsurf þ snodeT
; ð1Þ

which we verify in Fig. 2 by performing fits (black lines) in
which snode is held constant within each of Figs. 2(a)–2(c).
We further show how a highly asymmetric nodal

semimetal can be a predicted property of a Kondo lattice

in the presence of Sm vacancies (or other defects), which
have been reported to exist at high concentrations in
floating zone growth samples [23]. In the classic Kondo
lattice picture, the f-electron levels start out as being
strictly dispersionless (i.e., εf ¼ 0) and acquire dispersion
only upon hybridization with conduction bands [24]. The
immobility of the unhybridized f electrons implies that
elastic scattering is expected to result exclusively from
interactions between conduction electrons and defects.
The corresponding energy level broadening is therefore
Γ0 ¼ ℏjv0j=λ, where λ is a semiclassical mean free path and
v0 ¼ ℏ−1∂εk=∂k is the Fermi velocity of the unhybridized
conduction electron band. We proceed to obtain asymmetric
nodal semimetal under these considerations by adapting
the treatment recently introduced by Shen and Fu [19] to
the Kondo lattice scenario. We neglect any contributions
to the energy broadening that are common to both εf and
εk [25].
To simplify the derivation of the nodal semimetal, we

approximate the unhybridized conduction electron band
using a parabolic function

εk ¼ ℏ2k2

2m�
0

− ε0; ð2Þ

where ε0 ¼ 2eℏF0=m�
0 is defined in terms of the quantum

oscillation frequency F0 and the effective mass m�
0 that

have been extracted from fits to the dHvA oscillations at
temperatures T > 1 K [10]. After Shen and Fu [19],
hybridization yields two bands

ε�k − iΓ�
k ¼ 1

2
ðεk þ εf − iΓ0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ðεk − εf − iΓ0Þ2 þ V2

r
;

ð3Þ

which can be separated into real and imaginary
components ε�k and Γ�

k , respectively. When Γ0 ≪ 2V,
Eq. (3) produces the classic dispersion of a Kondo
insulator with a gap at the chemical potential [see
Fig. 3(a)]. Here, we define the hybridization potential
V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔεþ ϵ0=2Þ2 − ε20=4

p
in terms of the gap Δε

reported in low temperature transport and point contact
spectroscopy measurements [26,27].
For Γ0 ≲ 2V, the imaginary term leads to a small

reduction in the Kondo insulator gap [see Fig. 3(b)].
When Γ0 and 2V become comparable in magnitude,
however, a significant funnel-shaped depression in the
gap emerges at k ¼ �k0 in Fig. 3(b). Once Γ0 ≥ 2V, the
system undergoes a topological transformation into a nodal
semimetal [19]. In this limit, Γ0 overwhelms the Kondo
insulator hybridization, causing the electronic dispersion to
become gapless [see Fig. 3(b)]. In the vicinity of k ¼ �k0,
the expansion of Eq. (3) into real and imaginary compo-
nents is trivial. The real components can be expanded
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FIG. 2. (a) T dependence of the electrical resistivity of SmB6

grown using the floating zone technique [20] together with a fit to
Eq. (1) below ≈4 K. (b) T-dependent resistance (with reciprocal
scaling) of flux grown SmB6 crystals of different thicknesses,
rescaled so that their bulk-dominated resistances are the same at
20 K [21], showing that snodeT is invariant to thickness, indicating
it to be of bulk origin. The black lines are given by Eq. (1) in
which σsurf is adjusted to accommodate different sample thick-
nesses, while snode is held constant. (c) Similar plot in which the
surface of flux grown SmB6 is radiation damaged to different
depths (numbers shown for two faces) [22], revealing that the
surface contribution σsurf is significantly impacted, while snodeT
is invariant, again indicating snodeT to be of bulk origin.
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relative to jkj − k0, so that the electronic dispersion consists
of two hybridized bands

ε̃k;c ¼ ṽcðjkj − k0Þ þ ccðjkj − k0Þ3 þ � � � ;
ε̃k;f ¼ ṽfðjkj − k0Þ þ cfðjkj − k0Þ3 þ � � � ; ð4Þ

pinned to εf, where

ṽc ¼
∂εþk
ℏ∂k

����
k¼k0

¼ v0
2

�
1þ Γ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ2
0 − 4V2

p
�
;

ṽf ¼
∂ε−k
ℏ∂k

����
k¼k0

¼ v0
2

�
1 −

Γ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2
0 − 4V2

p
�

ð5Þ

are the Fermi velocities at k ¼ �k0 (of opposite sign) and
cc and cf are higher order terms. The subscripts c and f
refer to each of the bands being primarily of unhybridized
conduction electron and f-electron character, respectively.
For the imaginary components, we obtain

Γ̃c ¼
Γ0

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2
0 − 4V2

p
2

;

Γ̃f ¼ Γ0

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2
0 − 4V2

p
2

ð6Þ

at k ¼ �k0.
A peculiar consequence of the dispersion and defect

scattering originating solely from the unhybridized con-
duction electron band is that the mobility

μ� ¼ eτf
m�

f
≡ eτc

m�
c
¼ ev0

k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2
0 − 4V2

p ð7Þ

is uniform with respect to the hybridized c and f bands at
k ¼ �k0, with the relaxation times and effective masses
being given by τc ¼ ℏ=Γ̃c and τf ¼ ℏ=Γ̃f, and m�

c ¼
ℏk0=jṽcj and m�

f ¼ ℏk0=jṽfj, respectively. The uniform
mobility has interesting implications for the behavior of
SmB6 at low temperatures.
In the case of the dHvA effect, the different Fermi

velocities in Fig. 4 imply that the dHvA effect is the sum of
two components with identical frequencies F0 but very
different effective masses m�

c and m�
f, which become

m�
c ≈m0 and m�

f ≈m0ðΓ0=VÞ2;

in the limit Γ0 ≫ 2V, meaning that m�
f ≫ m�

c. The heavier
fitted effective mass in Fig. 1(a) corresponds to Γ0=V ≈ 13
at high magnetic fields, which suggests an upper bound of
V ∼ 4 meV for the hybridization potential in the vicinity of
the small ρ ellipsoids reported in SmB6 [9,10] (given that
Γ0 must be of order 50 meV or less in order for dHvA
oscillations to be observable). Since the exponent (π=μ�B)
of the Dingle damping term (associated with scattering
from defects) is proportional to the inverse mobility, the
uniform mobility implies that the amplitudes of the two
channels will be of similar order at low temperatures. A
slightly larger magnitude for the f-electron branch may be
the consequence of partially filled Landau levels away from
the chemical potential with less broadening contributing
to the dHvA effect, reflecting the fact that Γ̃k;f drops once
k ≠ �k0 [see Fig. 4(b)], while Γ̃k;c increases.
The observability of quantum oscillations requires

2V ≤ Γ0 ≲ ℏωc, which is easily realized for the small ρ
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the electronic dispersion for the same F, m�, and Δε, but for
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Γ0 ≫ 2V.
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ellipsoids, but not so easily realized for the large α
ellipsoids, owing to their smaller ℏωc. On the other hand,
dHvA oscillations from larger sections of the Fermi surface
have only been observed once [9]. In the present model, the
observation of α ellipsoid dHvA becomes possible only
under extremely fortuitous circumstances in which Γ0 ≈ 2V
in Eq. (7).
In the case of the electrical transport, the conductivity is

that of a nodal semimetal, which implies possible similar-
ities to that of a line-node semimetal [28]. In SmB6, the
excited carriers reside on a thin k-space film of area Sk that
encompasses the Fermi surface of the original unhybridized
conduction electron band wherever the inequality Γ0 ≥ 2V
is satisfied. If the density of defects (e.g., Sm vacancies)
is nonuniform, then the extreme sensitivity of the bulk
conductivity to Γ0=V (becoming conducting for Γ0 > 2V
and insulating for Γ0 < 2V) implies that the total resistivity
could be of a highly percolative nature. In the case of a
uniform density, however, we can proceed to calculate the
conductivity using a simple Drude picture. In this case, the
low temperature bulk conductivity is given by

σxx;bulk ¼ neμ� ¼ snodeT and σxy;bulk ¼ 0; ð8Þ

where μ� is the uniform mobility given by Eq. (7),

n¼2

Z
∞

0

f0ðεÞDðεÞεdε¼ ln2Sk
4π3ℏv0

Γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2
0−V2

p
V2

kBT ð9Þ

is the density of electrons plus holes thermally excited
across the node, f0ðεÞ is the derivative of the Fermi-Dirac
function, and

DðεÞ ¼ Sk
4π3ℏ

�
1

jvcj
þ 1

jvfj
�

¼ Sk
4π3ℏv0

Γ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2
0 − V2

p
V2

ð10Þ

is the electronic density of states (taking into consideration
the asymmetry of the node). From this we obtain

snode ¼
ln 2e2Sk
4π3ℏk0

Γ0

V2
kB: ð11Þ

The central prediction of the nodal semimetal, therefore,
is that the bulk conductivity has a linear dependence on
temperature—a similar temperature dependence having
been predicted for the line-node semimetal [28]—and that
the bulk Hall conductivity vanishes, which appears to have
already been indicated in sample thickness-dependent
experiments [4]. As T is increased, the outer flanks of
f0ðεÞ eventually reach the bottom of the conduction band
(k ¼ 0) and top of the valence band (jkj > 2 nm−1) in
Fig. 3(a). The very large electronic density of states at these
points is likely to be primarily responsible for the thermally
activated contribution to the electrical conductivity [not
included in Eq. (1)] that dominates the Kondo insulating

state at high T. Since εk and εf are vastly different in energy
at k ¼ 0 and jkj > 2 nm−1, the high temperature thermally
activated behavior of the Kondo insulator is not expected
to be significantly impacted by the formation of a nodal
semimetal.
The fitted magnitude of the linear-in-T conductivity is

found to be strongly sample dependent in Fig. 2, yielding
snode ≈ 0.17, 0.0028, and 0.43 Ω−1m−1 K−1 for the sam-
ples in Figs. 2(a)–2(c), respectively. On considering this
spread of values together with Γ0 ¼ 53 meV and different
values of the ratio Γ0=V ranging from 2 to 13, we find the
fitted snode in Fig. 2(a) to be consistent with a k-space area
Sk ranging between 4 × 1014 and 3 × 1018 m−2. The upper
end of this range is similar to the cross-sectional area of one
of the ρ ellipsoids in SmB6. The highly elongated shape of
the ρ ellipsoids in SmB6 implies that v0 and hence Γ0 are
≈2.4 times smaller around the belly of the ellipsoids than at
the tips, which means that the nodal semimetal will initially
form around the belly. Angle-dependent dHvA m�

f mea-
surements could be used to investigate how far such a nodal
semimetal extends in k space away from the belly regions.
Heat capacity measurements have suggested that the low

temperature heat capacity of SmB6 increases with the
concentration of Sm vacancies [23]. If this is confirmed
to be a general trend, then it means that there should be a
concomitant increase in snode and, perhaps, also AdHvA in
Fig. 1(a). In addition to producing a very heavy effective
mass component, a very large Γ0 causes the reconstructed f
band in Fig. 3(b) to become very narrow, potentially
providing an explanation for the upturn in the electronic
heat capacity at low temperatures [10]. Conversely, a nodal
semimetal is not expected to occur in a perfectly stoichio-
metric defect-free sample [29], which could be verified by
the vanishing of snode in such samples.
Dingle plots, in which the logarithm of the dHvA

amplitude is plotted vs 1=B [30], provide a possible means
for isolating the mobilities of the heavy and light carriers.
The slope of the Dingle plot is −π=μ�, which means that of
the slopes of the f-electron-dominated Dingle plot at
dilution fridge temperatures and the conduction electron-
dominated Dingle plot at T ≳ 1 K should be the same.
In summary, we propose a highly asymmetric nodal

semimetal to exist over certain regions of momentum space
of bulk SmB6, which we show to be supported by recent
experimental data. The first is that the dHvA amplitude [10]
is consistent with two channels of identical frequency
and similar mobility, but vastly different effective masses,
m�

c ≈ 0.18me and m�
f ≈ 30me. The second is a bulk linear-

in-temperature T contribution to the electrical conductivity
evident in the nonsaturating behavior of the resistivity
plateau at liquid helium temperatures [20–22]. We show
that these observations can be qualitatively understood by
considering the effect of lattice defects on the Kondo lattice
model, to which we adapt a theoretical treatment recently
developed by Shen and Fu [19]. A strong possibility,
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therefore, is that the nodal semimetal is caused by defects
in the crystalline lattice, such as those arising from
Sm vacancies [23]. The existence of a nodal semimetal
does not exclude other conventional quasiparticle origins of
the dHvA over other regions of k space [15–17,19]. It does,
however, cast doubt over the necessity of a neutral Fermi
surface [10].
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