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We study theoretically the nonreciprocal charge transport in two-dimensional noncentrosymmetric
superconductors with the Rashba spin-orbit interaction. The resistivity R depends on the current I linearly
under the external magnetic field B, i.e., R ¼ R0ð1þ γBIÞ, which is called the magnetochiral anisotropy. It
is found that the coefficient γ is gigantically enhanced by the superconducting fluctuation with the
components of both spin singlet and triplet pairings, compared with that in the normal state. This finding
offers a method to quantitatively estimate the ratio of the pairing interactions between the singlet and triplet
channels including its sign.
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The broken inversion symmetry P is expected to result in
directional nonreciprocal responses. For example, the
propagation of light through matter can be different
depending on the direction. However, Onsager’s reciprocal
theorem [1], which originates from the time-reversal
symmetry T of the microscopic dynamics, puts the con-
straint on the linear response function Kαβ describing the
response of α to the input β as

Kαβðq;ω; BÞ ¼ εαεβKβαð−q;ω;−BÞ; ð1Þ

where B is the magnetic field representing the T breaking,
εαð¼ �1Þ (εβ) is the even or odd nature of α (β) with
respect to T, and q and ω are the wave vector and
frequency, respectively, of the physical quantities α and
β. An example is the case where α and β are the same
component of the current and Kαβ describes the diagonal
element of the dielectric function. Therefore, only with the
broken T symmetry, asymmetric propagation of light
between q and −q, called directional dichroism, becomes
possible [2].
On the other hand, the nonlinear nonreciprocal responses

in the transport phenomena are characterized by the
current-dependent resistivity R expressed as

R ¼ R0ð1þ γBIÞ; ð2Þ

where I is the current, B is the magnetic field, and γ
represents the nonreciprocity [3–8]. This means the non-
linear I − V characteristics are asymmetric between the
positive and negative sign of I, i.e., the directional
resistivity, called magnetochiral anisotropy (MCA) [3].
When the T symmetry is intact, the electronic dispersion
εσðkÞ (k, crystal momentum; σ, spin) has the symmetry
between k and −k, i.e., εσðkÞ ¼ ε−σð−kÞ. Therefore, the
magnetic field B, which breaks T symmetry, is necessary in

addition to P breaking to induce the asymmetric energy
dispersion and hence I − V characteristics as shown in
Eq. (2). Microscopically, both the spin-orbit interaction λ
and the Zeeman effect μBB are needed to make the energy
dispersion asymmetric, which are usually small perturba-
tions compared with the kinetic energy of electrons, i.e., the
Fermi energy EF. Therefore, the strength γ of MCA in
Eq. (2) is usually very tiny, because its expression contains
the small factors of λ=EF and μBB=EF.
The superconductivity in noncentrosymmetric systems

changes this situation. The superconductivity changes the
transport phenomena within the narrow low-energy win-
dow below the superconducting gap Δ or at low temper-
atures around and below the mean field transition
temperature Tc ≅ Δ=kB. The conductivity due to the
fluctuating superconducting order parameter, i.e., para-
conductivity, above Tc shows enhanced nonreciprocal
transport as shown experimentally in MoS2 [9]. It has
been analyzed theoretically in terms of the time-dependent
Ginzburg-Landau (GL) theory, and the enhancement of γ
compared with that in the normal state γN is estimated as
γ=γN ∼ ðEF=ΔÞ3 [9]. This means that MCA provides useful
information about the electronic states and superconduc-
tivity of noncentrosymmetric materials. In the case of MoS2
with the out-of-plane magnetic field, the trigonal warping
of the band structure leads to the third-order terms in the
wave number of the order parameter, which is identified as
the main mechanism of MCA.
In this Letter, we study the MCA of two-dimensional

superconductors with the Rashba spin-orbit interaction in
the temperature regime slightly above Tc, where the current
is mainly carried by a thermal fluctuation of the super-
conducting order parameter [10,11]. The most essential
aspect of the noncentrosymmetric superconductivity is the
mixing of the spin-singlet even parity and spin-triplet odd
parity pairings [12–16]. One of the consequences of this is
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the very large upper critical magnetic field Bc2 beyond the
Pauli limit. As we will show below, the noncentrosym-
metric superconductors with the Rashba spin-orbit inter-
action as given by Eq. (3) show nonreciprocal charge
transport, which is very sensitive to the pairing interactions
for singlet and triplet channels as shown in Eq. (19).
Namely, once the Fermi energy EF, the strength of the
Rashba interaction, and Tc are known, one can estimate the
ratio of the pairing interactions between the singlet and
triplet channels, i.e., rs or rt, including its sign. Note also
here that the third-order terms in the wave number of the
order parameter, which was the main origin of γ for MoS2,
are estimated to be much smaller in the present case as
indicated by Eq. (22) below. We also show that the
nonreciprocal current has a unique electric and magnetic
field angle dependence due to the symmetry constraints for
the higher rank response tensor as shown in Figs. 1 and 2.
Before defining the Hamiltonian, we discuss the general

form of the spin-orbit interaction in time-reversal preserved
systems. If we express the spin-orbit interaction as gk · σ,
time-reversal symmetry requires gk ¼ −g−k. In this Letter,
we assume the simplest Rashba spin-orbit interaction,
although the other forms will give the qualitatively same
conclusions.

We start with the Rashba Hamiltonian, which is given
by [8]

Hk ¼ ξk þ αðkxσy − kyσxÞ − μBB · σ; ð3Þ

where ξk ¼ ½ðℏ2k2Þ=2m� − EF is the dispersion without the
spin-orbit interaction, α is the Rashba parameter, B is the
in-plane magnetic field, and σ is the Pauli matrix. We have
assumed that the g factor is 2. Its eigenenergies are

ξ�k ¼ ξk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðαky þ BxÞ2 þ ðαkx − ByÞ2

q
: ð4Þ

Now we consider the superconductivity in the presence
of the Rashba interaction [12,16]. For an even parity
attractive interaction, we assume the standard BCS-type
on-site attractive interaction:

Hint ¼ −Vg
X
kk0

c†k↑c
†
−k↓c−k0↓ck0↑; ð5Þ

with c†kσ and ckσ being the creation and annihilation
operators, respectively, of the electron with momentum k
and spin σ. In general, the odd parity part is

−
X
kk0

Vu
ijðk; k0Þðiσiσ2Þαβðiσjσ2Þγδc†kαc†−kβc−k0γck0δ; ð6Þ

with Vu
ijðk; k0Þ being an odd function with respect to k

and k0 and invariant under the crystal symmetry trans-
formations. For simplicity, we assume the simplest case
Vu
ijðk; k0Þ ¼ Vuγ̂iðkÞγ̂jðk0Þ with γ̂ðkÞ ¼ 1

k ð−ky; kyÞ in the
Rashba system. We assume that the Rashba splitting is
much larger than the critical temperature (ER ≫ Tc) and
the interband pairings can be neglected. Then, the inter-
action Hamiltonian in the band basis reads

Hint ¼ −
X
kk0λλ0

tkλt�k0λ0 ĝλλ0ψ
†
kλψ

†
−kλψ−k0λ0ψk0λ0 ; ð7Þ

where Ψ†
kλ and Ψkλ are the creation and annihilation

operators, respectively, with the band index λ ¼ � and
tkλ ¼ λieiϕk with ϕk ¼ arg k. The k-independent matrix ĝ is

ĝ ¼
�
g1 g2
g2 g1

�
; ð8Þ

with g1 ¼ ðVg þ VuÞ=4 (> 0) and g2 ¼ ðVg − VuÞ=4. In
this Letter, we focus on two limiting cases. (i) jVuj ≪ jVgj
case.—We calculate the first-order terms in the small
parameter rt ¼ ½ð2VuÞ=ðVg þ VuÞ�, which is proportional
to the triplet channel interaction Vu. (ii) jVuj ≫ jVgj
case.—We are interested in the first-order terms in the
small parameter rs ¼ ½ð2VgÞ=ðVg þ VuÞ�, which is propor-
tional to the singlet channel interaction. In most of the
cases, we expect that the singlet interaction Vg is larger than

(a) (b) (c)

FIG. 1. The three field configurations which correspond to
(a) σxyxx, (b) σxxxy, and (c) σxyyy. B, E, and I in the figures
represent the electric field, magnetic field, and nonreciprocal
current, respectively.

FIG. 2. The electric and magnetic field angle dependence of
jð2Þ. θB (θE) represents the angle between the magnetic (electric)
field and the nonreciprocal current. The amplitude is normalized
by σxyyyBE2.
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the triplet interaction Vu, and hence we briefly mention the
amplitude of rt. If we assume that Vg and Vu correspond to
the on-site and nearest-neighbor interactions, respectively,
their amplitudes can be roughly estimated as e2=a0 and
e2=a with a0 being the Bohr radius and a being the lattice
constant. Therefore, rt ∼ 0.1 is a reasonable value.
Although we cannot apply the same argument for rs, we
consider the other limit rs ≪ 1 to see the global behavior
of γ.
In order to calculate the superconducting fluctuation

current slightly above the mean field critical temperature, it
is convenient to employ the GL theory. The free energy
quadratic with respect to the order parameters can be
obtained by the equation [12]

F ¼
Z

d2q
ð2πÞ2

�X
λλ0

Ψ�
λqðĝ−1Þλλ0Ψλ0q

−
X
λ

T
X
ωn

Z
d2k
ð2πÞ2 Gλðk; iωnÞ

×Gλð−kþ q;−iωnÞjΨλqj2
�
; ð9Þ

where Ψλq is the order parameter and Gλðk; iωnÞ ¼
ðiωn − ξλkÞ−1 is the noninteracting normal Green’s func-
tion. We set the Boltzmann constant kB ¼ 1.
First, we assume EF > 0, and we will soon show that the

nonreciprocal current vanishes for EF < 0 in Eq. (18)
below. After some calculations (see Supplemental Material
[17]), we obtain

F¼
Z

d2k
ð2πÞ2

X
λλ0

Ψ�
λ ½ðĝ−1Þλλ0 þδλλ0NλðS1−LλkÞ�Ψλ0 ; ð10Þ

Lλk ¼ Kλk2 − λRλðBykx − BxkyÞ; ð11Þ

S1 ¼ log
2eγEEc

πT
; ð12Þ

with δλλ0 , γE, and Ec being the Kronecker delta, Euler
constant, and cutoff energy, respectively. The density of
states Nλ and the other coefficients Kλ and Rλ are given in
Supplemental Material [17]. The critical temperatures are
obtained by solving

det ½ĝ−1 − N̂S1ðTcÞ� ¼ 0; ð13Þ

with N̂λλ0 ¼ δλλ0Nλ. It results in

1

S1ðTcÞ
¼ g1ðN− þ NþÞ

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
g1ðN− − NþÞ

2

�
2

þ g22N−Nþ

s
: ð14Þ

Because of the form of the interaction (g1 ≈ g2 for the
singlet dominant case and g1 ≈ −g2 for the triplet dominant
case), the solution with the plus sign has a much higher
critical temperature. Hence, we can ignore the order
parameter with the lower critical temperature when we
calculate the fluctuation current.
The fluctuation current can be obtained by evaluating the

equation [9,18]

j ¼ −T
X
k

C
∂ηðkþ 2eAÞ

∂A
����
A¼0

×
Z

0

−∞
du exp

�
−C

Z
0

u
dtηðk − 2eEtÞ

�
; ð15Þ

where η is the eigenvalue of the matrix in Eq. (10)
with the higher critical temperature and C ¼
fð32TcÞ=½πℏðN− þ NþÞ�g þOðrt;sÞ. We expand the
eigenvalue up to Oðrt;sÞ, because we can show that the
coefficient of the second-order term is half of the coefficient
of the linear term; hence, the higher-order terms can be
neglected. It is noted that the factor C should contain an
rt;s-dependent correction from the relaxation time of order
parameters in the time-dependent GL theory. However, we
ignore it, because it does not affect the γ value in the lowest
order of rt;s. As in the case of the normal state, we assume
that the electric and magnetic fields are applied along the x
and y directions, respectively, and evaluate the current
along the x direction up to OðByE2

xÞ. We will discuss the
case of general field configurations later. After the inte-
gration in Eq. (15) is carried out (we employed
Mathematica), the relation Eq. (14) is used to simplify
the equation. The result is

jx ¼ σð1ÞEx þ σð2ÞE2
x; ð16Þ

σð1Þ ¼ e2

16ℏε
; ð17Þ

σð2Þ¼πe3Byrt;s
128ℏε2

×
N−NþðK−N−−KþNþÞðK−RþþKþR−Þ
S1ðTcÞTcðN−þNþÞðK−N−þKþNþÞ2

; ð18Þ

in the lowest order of rt;s. Here, we have defined the
reduced temperature ε ¼ ½ðT − TcÞ=Tc�. The linear coef-
ficient σð1Þ is the conventional form of the fluctuation
conductivity in two-dimensional superconductors. The
nonlinear coefficient σð2Þ grows faster than σð1Þ toward
the critical temperature as in the case of MoS2 [9]. It is
noted that the parity mixing is essential for the nonrecip-
rocal current, which vanishes for rt;s ¼ 0.
We mention the case when the Fermi energy is below the

crossing point of the bands (EF < 0). In this case, because
the density of states from the upper band is zero, the

PHYSICAL REVIEW LETTERS 121, 026601 (2018)

026601-3



nonreciprocal current vanishes, whereas the normal current
contribution exists [8].
For EF > 0, the γ value expressed with the microscopic

parameters is

WγS ¼
σð2Þ

Byðσð1ÞÞ2
¼ πμBℏS3EFαrt;s

eS1Tcð2EF þ ERÞ
; ð19Þ

with W being the sample width and ER ¼ ½ðmα2Þ=ℏ2�
being the energy splitting at the shifted momentum due to
the Rashba spin-orbit interaction, and S3 ¼ f½7ζð3Þ�=
ð4π2T2

cÞg. We have used the relation between σð1Þ, σð2Þ,
and γ as shown in Ref. [9]. More precisely, σð1Þ and σð2Þ in
Eq. (19) should contain normal state contributions.
Therefore, the γ value approaches the value in Eq. (19)
when the fluctuation contribution exceeds the normal
contribution. Explicitly, according to the Drude formula
for the normal conductivity, the γ value develops below
ε� ¼ ½m=ð16ℏnτÞ�, with n being the electron density and τ
being the relaxation time.
It should also be noted that the sign of Eq. (19) depends

on the sign of rt;s, i.e., the sign of Vu for the singlet
dominant case and Vg for the triplet dominant case.
Therefore, we can determine whether the interaction is
repulsive or attractive by MCA measurement.
Here, we consider the nonreciprocal current which relies

on the third-order term with respect to the wave number as
transition metal dichalcogenides [9]. Although the Rashba
Hamiltonian possesses rotational symmetry, the cubic term
of the wave number of the order parameter appears in the
GL free energy in the presence of the in-plane magnetic
field. The detailed calculation of the γ value is shown in
Supplemental Material [17], and the result is

Wγ̃posS ¼ 3πμBℏα
2eTcð2EF þ ERÞ2

ðEF > 0Þ; ð20Þ

Wγ̃negS ¼ 15πμBℏα
4eTcERð2EF þ ERÞ

ðEF < 0Þ: ð21Þ

The ratio between the γ values from the parity mixing and
the cubic term mechanisms is

γS
γ̃posS

∼
rt;sEFð2EF þ ERÞ

S1T2
c

: ð22Þ

Therefore, the MCA from the cubic term is negligible
compared to that from the parity mixing.
Next, we compare the γ values in the normal state and the

superconducting fluctuating regime [Eq. (19)]. In Ref. [8],
it has been concluded that the MCA exists if the Fermi
energy is below the crossing point of the bands (EF < 0).
The amplitude of the MCA is

WγN ¼ 3πμBℏα

2e½ERðER − 2jEFjÞ�3=2
: ð23Þ

We assume that the strength of the spin-orbit interaction is
comparablewith the Fermi energy (ER ≈ jEFj), because it is
difficult to realize EF < 0with a small ER. Then, we obtain

WγN ∼
μBℏ2

e
ffiffiffiffi
m

p 1

jEFj5=2
: ð24Þ

In the superconducting fluctuation regime, the nonrecipro-
cal fluctuation current exists in the case of EF > 0, which is
opposite to the normal state. With the same assumption for
the normal state, we obtain

WγS ∼
μBℏ2

e
ffiffiffiffi
m

p rt;sE
1=2
F

S1T3
c

: ð25Þ

From Eqs. (24) and (25), we conclude that the MCA is
drastically enhanced in the superconducting fluctuation
regime because of the huge energy scale difference between
the Fermi energy EF and the critical temperature Tc. This is
similar to the proceeding results for MoS2 [9].
We finally mention the electric and magnetic field angle

dependence of the nonreciprocal current. If we express the
second-order current as ji ¼ σijklBjEkEl, the coefficient
σijkl is the pseudotensor consistent with the crystal sym-
metry. Our model Eq. (3) possesses C∞ symmetry and
arbitrary in-plane mirror symmetries, which impose the
restrictions that, among σxjkl, only σxxxyð¼ σxxyxÞ, σxyxx,
and σxyyy can be finite (corresponding configurations are
shown in Fig. 1), and σxyyy ¼ 2σxxxy þ σxyxx and σyjkl ¼
−σxjkl are satisfied. According to calculations the same as
that for σxyxx above, we obtain σxxxy ¼ − 1

3
σxyxx and

σxyyy ¼ 1
3
σxyxx, which satisfy the above conditions. If we

define the angle between the current and magnetic (electric)
field as θB ðθEÞ, the nonreciprocal current is

jð2Þ ¼ σxyyy½2 sin θB þ sin ðθB − 2θEÞ�BE2; ð26Þ

whose dependence in the ðθB; θEÞ plane is shown in Fig. 2.
It is noted that the normal state has the same angle
dependence, although it has not been discussed in the
previous paper [8]. Realistic materials do not have such
high symmetries; however, the above discussion should be
applicable if the Fermi surface is almost circular.
Wehave investigated theMCAof theRashba system in the

superconducting fluctuation regime. The main result is the
explicit form of the γ value shown in Eq. (19). Here, we
estimate the γ value for the LaAlO3=SrTiO3 interface, where
two-dimensional Rashba superconductivity is realized
[19–22]. Its superconducting critical temperature is
Tc ∼ 100 mK. We mentioned that the γ value approaches
the value in Eq. (19)when the fluctuation current exceeds the
normal state contribution. Thenormal state sheet resistance is
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RN ∼ 1kΩ [19–22], and the linear part of the fluctuation
conductivity is shown in Eq. (17). By comparing them, we
obtainT − Tc ∼ 1.5 mK,belowwhichEq. (19) is applicable.
The carrier density is n ∼ 1013 cm−2, the spin-orbit field is
BSO ∼ 1 T, and the Debye temperature is TD ∼ 400 K. If we
assume rt ¼ 0.1, we obtain WγS ∼ 8 × 10−2 T−1 A−1 m.
With the typical sample width W ¼ 10−6, we obtain
γS ∼ 8 × 104 T−1A−1, which is a very large value compared
with the previously known systems [2–6].
Such a huge enhancement of the MCA originates from

the energy scale difference between the Fermi energy EF
and the critical temperature Tc as indicated in Eqs. (24) and
(25). This phenomenon is similar to the case of super-
conducting MoS2 [9], in which the large MCA stems from
the trigonal warping term due to its threefold rotational
symmetry. However, the MCA originates from the parity
mixing of the order parameter in the present case.
We have also shown the unique field angle dependence of

the nonreciprocal current, which is summarized in Fig. 1. It
originates from the symmetry constraints of the higher rank
response tensor. Especially, if the Fermi surface is almost
circular andwell approximated by ourmodel, the field angle
dependence is given in Eq. (26) and shown in Fig. 2.
In addition to LaAlO3=SrTiO3 as we have discussed,

normal Rashba systems can be used with the aid of the
superconducting proximity effect. BiTeX (X ¼ I, Br, Cl)
[23,24], the surface of Au(111) [25], or Bi=Agð111Þ alloy
[26] will work well.
Experimentally, the nonreciprocal current can be

observed simply by measuring the second-order harmonic
voltage drop under a fixed ac current. With such a simple
method, we can observe the nontrivial second-order
response which reflects the crystal symmetry or the Hall
response of the nonlinear current shown in Fig. 1(c). It is
also possible to determine the sign of α from the sign of the
γ value. Moreover, we may estimate the amplitude of rt;s,
which is the ratio between the even and odd parity attractive
interactions, by using the measured γS value.

The authors thank Y. Saito, T. Ideue, and Y. Iwasa for
valuable discussions. R.W. was supported by the JSPS
KAKENHI Grant No. JP15J09045. N. N. was supported by
JSPS KAKENHI Grants No. JP26103006 and
No. JP18H03676, the Impulsing Paradigm Change through
Disruptive Technologies Program of Council for Science,
Technology and Innovation (Cabinet Office, Government
of Japan), and Core Research for Evolutionary Science and
Technology (CREST) No. JPMJCR16F1.

[1] L. Onsager, Reciprocal relations in irreversible processes. I,
Phys. Rev. 37, 405 (1931).

[2] G. L. J. A. Rikken and E. Raupach, Observation of mag-
neto-chiral dichroism, Nature (London) 390, 493 (1997).

[3] G. L. J. A. Rikken, J. Fölling, and P. Wyder, Electrical
Magnetochiral Anisotropy, Phys. Rev. Lett. 87, 236602
(2001).

[4] F. Pop, P. Auban-Senzier, E. Canadell, G. L. J. A. Rikken,
and N. Avarvari, Electrical magnetochiral anisotropy in a
bulk chiral molecular conductor, Nat. Commun. 5, 3757
(2014).

[5] V. Krstić, S. Roth, M. Burghard, K. Kern, and G. L. J. A.
Rikken, Magneto-chiral anisotropy in charge transport
through single-walled carbon nanotubes, J. Chem. Phys.
117, 11315 (2002).

[6] G. L. J. A. Rikken and P. Wyder, Magnetoelectric
Anisotropy in Diffusive Transport, Phys. Rev. Lett. 94,
016601 (2005).

[7] T. Morimoto and N. Nagaosa, Chiral Anomaly and Giant
Magnetochiral Anisotropy in Noncentrosymmetric Weyl
Semimetals, Phys. Rev. Lett. 117, 146603 (2016).

[8] T. Ideue, K. Hamamoto, S. Koshikawa, M. Ezawa, S.
Shimizu, Y. Kaneko, Y. Tokura, N. Nagaosa, and Y. Iwasa,
Bulk rectification effect in a polar semiconductor, Nat. Phys.
13, 578 (2017).

[9] R. Wakatsuki, Y. Saito, S. Hoshino, Y. M. Itahashi, T. Ideue,
M. Ezawa, Y. Iwasa, and N. Nagaosa, Nonreciprocal charge
transport in noncentrosymmetric superconductors, Sci. Adv.
3, e1602390 (2017).

[10] W. J. Skocpol and M. Tinkham, Fluctuations near super-
conducting phase transitions, Rep. Prog. Phys. 38, 1049
(1975).

[11] A. I. Larkin and A. A. Varlamov, in Superconductivity,
edited by K. H. Bennemann and J. B. Ketterson (Springer,
Berlin, 2008).

[12] Non-Centrosymmetric Superconductors, edited by E. Bauer
and M. Sigrist (Springer, Berlin, 2012).

[13] S. Yip, Noncentrosymmetric superconductors, Annu. Rev.
Condens. Matter Phys. 5, 15 (2014).

[14] V. M. Edelstein, , Characteristics of the Cooper pairing in
two-dimensional noncentrosymmetric electron systems, J.
Exp. Theor. Phys. 68, 1244 (1989). http://www.jetp.ac.ru/
cgi-bin/e/index/e/68/6/p1244?a=list.

[15] L. P. Gor’kov and E. I. Rashba, Superconducting 2D System
with Lifted Spin Degeneracy: Mixed Singlet-Triplet State,
Phys. Rev. Lett. 87, 037004 (2001).

[16] K. V. Samokhin and V. P. Mineev, Gap structure in non-
centrosymmetric superconductors, Phys. Rev. B 77, 104520
(2008).

[17] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.121.026601 for details
of calculations.

[18] A. Schmid, Diamagnetic susceptibility at the transition to
the superconducting state, Phys. Rev. 180, 527 (1969).

[19] N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis,
G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S.
Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M.
Triscone, and J. Mannhart, Superconducting interfaces
between insulating oxides, Science 317, 1196 (2007).

[20] A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T.
Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart,
and J.-M. Triscone, Electric field control of the
LaAlO3=SrTiO3 interface ground state, Nature (London)
456, 624 (2008).

[21] G. Herranz, G. Singh, N. Bergeal, A. Jouan, J. Lesueur, J.
Gázquez, M. Varela, M. Scigaj, N. Dix, F. Sánchez, and J.
Fontcuberta, Engineering two-dimensional superconductiv-
ity and Rashba spin–orbit coupling in LaAlO3=SrTiO3

PHYSICAL REVIEW LETTERS 121, 026601 (2018)

026601-5

https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1038/37323
https://doi.org/10.1103/PhysRevLett.87.236602
https://doi.org/10.1103/PhysRevLett.87.236602
https://doi.org/10.1038/ncomms4757
https://doi.org/10.1038/ncomms4757
https://doi.org/10.1063/1.1523895
https://doi.org/10.1063/1.1523895
https://doi.org/10.1103/PhysRevLett.94.016601
https://doi.org/10.1103/PhysRevLett.94.016601
https://doi.org/10.1103/PhysRevLett.117.146603
https://doi.org/10.1038/nphys4056
https://doi.org/10.1038/nphys4056
https://doi.org/10.1126/sciadv.1602390
https://doi.org/10.1126/sciadv.1602390
https://doi.org/10.1088/0034-4885/38/9/001
https://doi.org/10.1088/0034-4885/38/9/001
https://doi.org/10.1146/annurev-conmatphys-031113-133912
https://doi.org/10.1146/annurev-conmatphys-031113-133912
http://www.jetp.ac.ru/cgi-bin/e/index/e/68/6/p1244?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/68/6/p1244?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/68/6/p1244?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/68/6/p1244?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/68/6/p1244?a=list
https://doi.org/10.1103/PhysRevLett.87.037004
https://doi.org/10.1103/PhysRevB.77.104520
https://doi.org/10.1103/PhysRevB.77.104520
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.026601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.026601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.026601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.026601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.026601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.026601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.026601
https://doi.org/10.1103/PhysRev.180.527
https://doi.org/10.1126/science.1146006
https://doi.org/10.1038/nature07576
https://doi.org/10.1038/nature07576


quantum wells by selective orbital occupancy, Nat.
Commun. 6, 6028 (2015).

[22] E. Maniv, M. B. Shalom, A. Ron, M. Mograbi, A.
Palevski, M. Goldstein, and Y. Dagan, Strong correlations
elucidate the electronic structure and phase diagram of
LaAlO3=SrTiO3 interface, Nat. Commun. 6, 8239 (2015).

[23] K. Ishizaka, M. S. Bahramy, H. Murakawa, M. Sakano, T.
Shimojima, T. Sonobe, K. Koizumi, S. Shin, H. Miyahara,
A. Kimura, K. Miyamoto, T. Okuda, H. Namatame, M.
Taniguchi, R. Arita, N. Nagaosa, K. Kobayashi, Y.
Murakami, R. Kumai, and Y. Kaneko, Giant Rashba-type
spin splitting in bulk BiTeI, Nat. Mater. 10, 521 (2011).

[24] M. Sakano, M. S. Bahramy, A. Katayama, T. Shimojima,
H. Murakawa, Y. Kaneko, W. Malaeb, S. Shin, K. Ono,

H. Kumigashira, R. Arita, N. Nagaosa, H. Y. Hwang, Y.
Tokura, and K. Ishizaka, Strongly Spin-Orbit Coupled
Two-Dimensional Electron Gas Emerging near the Surface
of Polar Semiconductors, Phys. Rev. Lett. 110, 107204
(2013).

[25] S. LaShell, B. A. McDougall, and E. Jensen, Spin Splitting
of an Auð111Þ Surface State Band Observed with Angle
Resolved Photoelectron Spectroscopy, Phys. Rev. Lett. 77,
3419 (1996).

[26] C. R. Ast, J. Henk, A. Ernst, L. Moreschini, M. C. Falub, D.
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