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Motivated by recent experiments on Kondo insulators, we theoretically study quantum oscillations from
disorder-induced in-gap states in small-gap insulators. By solving a non-Hermitian Landau level problem
that incorporates the imaginary part of electron’s self-energy, we show that the oscillation period is
determined by the Fermi surface area in the absence of the hybridization gap, and we derive an analytical
formula for the oscillation amplitude as a function of the indirect band gap, scattering rates, and
temperature. Over a wide parameter range, we find that the effective mass is controlled by scattering rates,
while the Dingle factor is controlled by the indirect band gap. We also show the important effect of
scattering rates in reshaping the quasiparticle dispersion in connection with angle-resolved photoemission
measurements on heavy fermion materials.
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Quasiparticles in interacting or disordered systems
generally have a finite lifetime due to the presence of
electron-electron, electron-phonon, or electron-impurity
scattering. The decay of quasiparticles is formally described
by the imaginary part of an electron’s self-energy. In
small-gap systems, the decay of a quasiparticle can alter its
energy-momentum dispersion significantly, for example,
by transforming two-dimensional Dirac points into “bulk
Fermi arcs” [1,2].
In this Letter, we study the effect of quasiparticle lifetime

on the quantum oscillation in small-gap insulators. The
oscillation of various physical quantities, such as the mag-
netic susceptibility and resistivity with respect to the mag-
netic field is usually regarded as a key characteristics of
metals with a Fermi surface [3]. The period of the oscillation
is determined by the Fermi surface area, and the amplitude
decay with the temperature is determined by the electron’s
effective mass. Intriguingly, recent experiments found quan-
tum oscillations in heavy fermion materials SmB6 [4,5] and
YbB12 [6,7], which are Kondo insulators with a small energy
gap. The physical origin of these quantum oscillations in
insulators is hotly debated [8–19].
Motivated by, but not limited to, these experiments on

Kondo insulators, we theoretically study quantum oscil-
lations from disorder-induced in-gap states in small-gap
insulators. In a generic two-band model with a hybridiza-
tion gap, disorder leads to a finite quasiparticle lifetime and
in-gap states. The spectrum and width of Landau levels in a
magnetic field is calculated by solving a non-Hermitian
Landau quantization problem that incorporates the imagi-
nary part of the electron’s self-energy. The density of states
inside the gap, which comes from the tails of broadened
Landau levels, is found to exhibit oscillations periodic in
1=B. The period is given by the Fermi surface in the
absence of hybridization. An analytical formula is derived

for the oscillation amplitude as a function of the indirect
band gap, the scattering rates, and the temperature. For a
wide range of parameters, the temperature dependence of
the quantum oscillation is qualitatively similar to Lifshitz-
Kosevich (LK) theory of normal metals [3,20,21]. A key
difference, however, is that the cyclotron mass in the LK
factor is not the band mass but depends on the scattering
rate. Moreover, the oscillation amplitude at a fixed temper-
ature, i.e., the Dingle factor, is controlled by the indirect
band gap, when the scattering rate is small.
The peculiarity of the quantum oscillation amplitude we

found in small-gap insulators, where the scattering rate
controls the LK factor instead of the Dingle factor, is quite
the opposite of the case of normal metals, where the
scattering rate controls the Dingle factor instead of the LK
factor. This result is an important prediction of our theory.
It contrasts clearly with quantum oscillations in clean
insulators that lack in-gap states, where the amplitude of
magnetization oscillation exhibits a nonmonotonic temper-
ature dependence [8] or deviates from LK factors [22], and
the oscillation of a thermally averaged density of states
exhibits thermal activation behavior and drops to zero,
instead of saturating, in the zero temperature limit [9,11,22].
We start by considering a generic two-band model with a

hybridization gap:

H0ðkÞ ¼
�
ϵ1ðkÞ ΔðkÞ
ΔðkÞ −ϵ2ðkÞ

�
; ð1Þ

with k≡ jkj. Diagonal terms ϵ1ðkÞ and −ϵ2ðkÞ describe the
dispersion of an electron-type and a hole-type band,
respectively, and ΔðkÞ describes their hybridization. This
Hamiltonian in the inverted regime is widely used as a
minimal model for the electronic structure of Kondo
insulators at low temperatures [23]. In this context, the
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two bands come from d and f orbitals and exhibit an
avoided crossing on a circle or a sphere in k space k ¼ kF,
which is set by the condition ϵ1ðkFÞ þ ϵ2ðkFÞ ¼ 0. Note
that the hybridization gap δðkFÞ≡ jΔðkFÞj is (much) larger
than the indirect band gap δ, when the two bands are
(highly) asymmetric, as shown in Fig. 1.
Disorder introduces in-gap states in the above model.

The disordered Hamiltonian we shall study is H ¼P
kc

†
kH0ðkÞck þ R

drUðrÞc†rΛcr, where c† ≡ ðd†; f†Þ is
the electron creation operator for the two orbitals. UðrÞ is
the impurity potential, which is assumed to be character-
ized by hUðrÞ ¼ 0i and hUðrÞUðr0Þi ¼ nimpU2

0δðr − r0Þ
under disorder average. nimp is the impurity density. The
electron-impurity scattering is allowed to be orbital depen-
dent, so the scattering vertex takes the form Λ ¼ αI þ βσz.
In heavy fermion systems, f orbitals are tightly bound to
the nucleus and scatter much less with impurities than d
orbitals do.
Using self-consistent Born and T-matrix approximation,

we compute disorder-induced electron self-energy operator
ΣðωÞ, which is a 2 × 2 matrix. In systems with p-wave
hybridization, the self-energy is guaranteed to be diagonal
[24]. The real part of ΣðωÞ renormalizes the chemical
potential and the inverted gap at k ¼ 0 and, for conven-
ience, will be absorbed into H0 in the following. The
imaginary part of the self-energy becomes a nonzero
diagonal matrix when the disorder strength nimpU0 exceeds
a critical value on the order of hybridization gap δðkFÞ. At
low energy jωj≲ δðkFÞ, ImΣðωÞ is weakly dependent on ω
and hence can be approximated by

ΣðωÞ ≃
�−iΓ1 0

0 −iΓ2

�
≡ −i

2
ðΓI þ γσzÞ: ð2Þ

Γ1, Γ2 > 0 are the inverse lifetimes of quasiparticles on
the d and f bands, respectively, and we have defined Γ≡
Γ1 þ Γ2 and γ ≡ Γ1 − Γ2. Generally, Γ1 ≠ Γ2 or γ ≠ 0, as
the two bands have different masses and disorder potentials.

The imaginary part of the electron’s self-energy modifies
and broadens the quasiparticle dispersion and creates in-
gap states. To see this, we compute the spectral function
Aðk;ωÞ ¼ −2Im½1=ðw −H0ðkÞ − ΣÞ�. For a given k,
Aðk;ωÞ is a sum of Lorentzians associated with the poles
of the Green’s function E�ðkÞ, which are complex eigen-
values of the non-Hermitian quasiparticle Hamiltonian
HðkÞ≡H0ðkÞ þ Σ. For our two-band model and self-
energy defined by Eqs. (1) and (2), the two eigenvalues
E�ðkÞ are [1]

E�ðkÞ ¼
1

2
½ϵ1ðkÞ − ϵ2ðkÞ − iΓ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵ1ðkÞ þ ϵ2ðkÞ − iγÞ2 þ Δ2ðkÞ

q
�: ð3Þ

The real part of E�ðkÞ, denoted as ϵ�ðkÞ, is the dispersion
of quasiparticle conduction and valence band, while its
imaginary part determines the width of the broadened
spectral function. In the special case of a single scattering
rate Γ1 ¼ Γ2 or γ ¼ 0, the imaginary part is a constant so
that the original band dispersion of H0ðkÞ is broadened
uniformly.
In the general case of two distinct scattering rates

Γ1 ≠ Γ2, H0ðkÞ and Σ do not commute. Then γ ≠ 0 has
the nontrivial effect of altering the quasiparticle band
dispersion ϵ�ðkÞ; namely, damping reshapes dispersion.
In particular, the quasiparticle hybridization gap at k ¼ kF
becomes reduced, given by

ϵþðkFÞ− ϵ−ðkFÞ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2ðkFÞ− γ2
p

; when jγj< δðkFÞ;
0; when jδ≥ δðkFÞj:

ð4Þ

With increasing disorder, the scattering rates Γ1;2—and
hence jγj—increase. Above a critical amount of disorder
jγj > δðkFÞ, the quasiparticle gap completely vanishes,
leading to a disorder-induced semimetal. In the semi-
metallic phase, the quasiparticle conduction and valence
bands stick together on the Fermi surface k ¼ kF, despite
the fact that the hybridization term is present. Such band
sticking without fine-tuning is a remarkable and topologi-
cally robust feature which is unique to the non-Hermitian
band theory of finite-lifetime quasiparticles [27] but for-
bidden by level repulsion in Hermitian band theory. As we
shall show later, quantum oscillation appears in both the
insulator and semimetal phases.
In Fig. 2, we plot the spectral function Aðk;ωÞ and the

density of states AðωÞ≡ R ðdk=ð2πÞ2ÞAðk;ωÞ for different
scattering rates Γ1;2. Because of its localized nature, the f
orbital has a smaller disorder-induced scattering rate
Γ2 < Γ1. Figures 2(a) and 2(b) correspond to jγj < δðkFÞ
and jγj > δðkFÞ, respectively. We emphasize that the
presence of two distinct scattering rates is necessary to
reproduce many important features of the angle-resolved

FIG. 1. Schematic band structure of a Kondo insulator. (Inset)
Enlargement of the hybridization gap near k ¼ kF:δðkFÞ is the
hybridization gap defined as the energy difference of the two
bands at k ¼ kF. δ is the indirect band gap.
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photoemission spectroscopy (ARPES) data on heavy fer-
mion materials, which cannot be captured using Γ1 ¼ Γ2

[24]. We note a systematic temperature-dependent ARPES
study of the Kondo insulator SmB6 showing that the f-state
spectra peak grows in height and narrows at low temper-
atures [28]. This observation is consistent with the exist-
ence of well-defined electron quasiparticles in the zero
temperature limit, but it does not favor the scenario of
fractional excitations.
Owing to the disorder scattering, the hybridization gap is

partially filled, as shown by the density of states AðωÞ in
Fig. 2(c). Assuming that the hybridization gap and scattering
rates are small compared to thed-state bandwidth, the density
of states at low energy can be computed analytically [24]:

AðωÞ ¼ D0Im

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ2=½4ðωþ iΓAÞ2� − 1
p

�
; ð5Þ

with

ΓA ¼ m1Γ1 þm2Γ2

m1 þm2

; δ≡ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p
m1 þm2

δðkFÞ: ð6Þ

Here,m1;2 > 0 represents the effectivemasses for thed andf
bands, respectively, D0 ¼ D1 þD2 is the total density of
states for both thed andf bands at the Fermi energyω ¼ 0 in
the absence of a hybridization gap, and δ is the indirect band
gap in the clean limit. The imaginary partΓA, aweighted sum
of the two scattering rates, leads to a disorder-induced
broadening of the density of states. Since the f band has a
much larger mass, m2 ≫ m1, the indirect gap δ is much
smaller than the hybridization δðkFÞ, and even a small
scattering rate Γ2 is sufficient to generate a considerable
density of states within the gap, which is consistent with
previous theoretical studies [29,30] and experimental find-
ings [31]. In-gap states in SmB6 were also reported in
numerous experiments, although their origin remains an
open question. For example, the low temperature electronic
specific heat grows linearlywith temperatureC ∼ γT, instead

of exponentially. Our theory is consistent with recent experi-
ments where a variation of γ from sample to sample is found
[5,32–34]. The large bulk ac conduction recently found in
SmB6 [35] also supports the existence of localized in-gap
states.
We now show that the in-gap density of states in our

model exhibits quantum oscillation under a magnetic field.
To the leading order approximation, the scattering rates
are taken to be field independent. The density of states
is then given by AðωÞ ¼ −ðB=πÞImP

j½1=ðω − EjÞ�, where
Ej denotes the complete set of complex eigenvalues of
the non-Hermitian Hamiltonian with Peierls substitution
k → k −A (e ¼ ℏ ¼ 1), i.e., HðBÞ ¼ H0ðk −AÞ þ Σ.
For concreteness, we consider two bands with quadratic

dispersion in two dimensions: ϵi¼k2=ð2miÞ−μi (i ¼ 1, 2),
where m1;2 > 0 represents the effective masses for the d
and f bands, respectively. We take an isotropic p-wave
hybridization gap: ΔðkÞ ¼ vðkxsx þ kysyÞ. Its band struc-
ture is schematically shown in Fig. 1.
The exact non-Hermitian Landau level spectrum of

HðBÞ is derived analytically [24]. Each Landau level
n ≥ 1 consists of two sets of complex eigenvalues in each
spin sector, denoted by s ¼ ↑;↓:

Es
n≥1;� ¼ 1

2

�
ϵs1;n − ϵs2;n − iΓ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðϵs1;n þ ϵs2;nÞ − iγ�2 þ v2ð8nBÞ

q �
; ð7Þ

where ϵs1;n ¼ Bðn� 1=2Þ=m1 þ μ1 and ϵs2;n ¼ Bðn ∓
1=2Þ=m2 þ μ2 [with an upper (lower) sign for s ¼ ↑
(s ¼ ↓)]. For a high Landau level, n ≫ 1, the exact result
Eq. (7) is identical to the one obtained by simply replacing
k →

ffiffiffiffiffiffiffiffiffi
2nB

p
in the zero-field dispersion [Eq. (3)], and it is

thus also identical for both spin sectors. This agreement
shows that a semiclassical approximation remains valid for
Landau quantization of finite-lifetime quasiparticles whose
self-energy has an imaginary part.
Typical Landau level energy spectrum is plotted as a

function of the magnetic field in Fig. 3(a) for the insulator
phase, and in Fig. 3(b) for the disorder-induced metal
phase. Band edge oscillation can be seen clearly in both
cases. For a given Landau level n, the hybridization gap is
minimized when B ¼ k2F=ð2nÞ. In this way, the band edges
of Landau levels oscillate with period Δð1=BÞ ¼ 2=k2F ¼
2π=SF, where SF ≡ πk2F is the Fermi surface area in the
absence of the hybridization. The oscillation of Landau
level band edges leads to the oscillation of spectral function
inside the gap, as the spectral weights inside the gap come
from the tail of the broadened Landau levels. This effect,
originating from the lifetime effect, persists even at zero
temperature and in the limit of small (but nonzero)
scattering rates.
We now turn to the field-dependent and thermally

averaged density of states inside the gap, defined as

(c)(b)(a)

FIG. 2. (a) Spectral functionAðk;ωÞ for model ϵi ¼ k2=ð2miÞ −
μi (i ¼ 1, 2),m2=m1 ¼ 50, δðkFÞ=ðμ2 − μ1Þ ¼ 0.02, Γ2=δðkFÞ ¼
0.1,Γ1=δðkFÞ ¼ 0.7, where the electron is spinless. The unit for the
color bar is 1=δðkFÞ. (b) Same as (a) but with Γ1=δðkFÞ ¼ 1.7.
(c) Momentum-integrated spectral function AðωÞ for models
in (a) (blue, solid) and (b) (red, dashed), and in the clean limit
Γ1 ¼ Γ2 ¼ 0 (black, dotted). The unit for AðωÞ is m2.
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Dðω; TÞ≡ −
Rþ∞
−∞ dEð∂nFðE − ω; TÞ=∂EÞAðEÞ, where

nFðμ; TÞ ¼ ðeðE−μÞ=T þ 1Þ−1 is the Fermi-Dirac distribution
function. Under the assumption of a small hybridization
gap δðkFÞ ≪ k2F=

ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p
, a weak magnetic field B ≪ k2F,

and a low temperature T ≪ δðkFÞ; B=m1;2, the density of
states can be analytically computed as [24]

Dðω ¼ 0; TÞ

¼ −4 cos
�
πk2F
B

�X
i¼�

Mi
π2T
ωc;i

sinhð2π2Tωc;i
Þ exp

�
−
Di

B

�
; ð8Þ

where ωc;i ≡ B=Mi represents the cyclotron frequencies
associated with the following effective masses:

M� ¼ ðm1 þm2Þ
2

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ δ2=ð4Γ2
AÞ

p � m1 −m2

m1 þm2

�
; ð9Þ

and D� are renormalized Dingle exponents,

D� ¼ πðm1 þm2Þ
�
ΓA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2=ð4Γ2

AÞ
q

� ΓD

�
; ð10Þ

where ΓD ≡ ðm1Γ1 −m2Γ2Þ=ðm1 þm2Þ.

The analytical formula for quantum oscillation ampli-
tude, Eq. (8), is one of our main results, whose form is
similar to that in free electron models [21] but with
renormalized LK and Dingle factors. It is a sum of two
oscillating components that share the same period
Δð1=BÞ ¼ 2π=SF. This periodicity is consistent with our
expectation from the Landau level spectrum shown in
Fig. 3, and it has also been reported in previous works
without the inclusion of lifetime effects [8,11,14]. Note that
this result is not completely obvious, as the conduction
band minimum and valence band maximum are located at
two different momenta, k� ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2F � ðm1 −m2Þδ
p

, rather
than at kF [24]. Instead of having two periods given by k2�,
the oscillation has a single period given by k2F, the Fermi
surface area of the two bands in the absence of hybridi-
zation. We also note that the phase of the oscillation is zero
in Eq. (8), which is different from the π phase shift in a free
electron model. Under a strong magnetic field B ∼ k2F, there
will be a field-dependent phase shift [24], as has been
reported recently [36–39].
The oscillation amplitude in Eq. (8) is determined by two

scattering rates, ΓA and ΓD, the indirect band gap δ, and the
temperature T. It reduces to familiar results in various
limits. In the gapless limit δðkFÞ ¼ 0, we reproduce the
LK factors and Dingle factors for two metals. In the clean
limit Γ1 ¼ Γ2 ¼ 0, there is no density of state within the
gap to the leading order of temperature, and we find
Dðω ¼ 0; TÞ ¼ 0.
Although Eq. (8) is valid both in the insulating phase

Γ1;2 ≪ δðkFÞ and in the semimetallic phase jγj > δðkFÞ, in
the following we focus on the insulating phase, which
applies to Kondo insulators. A detailed study of the
disorder-induced semimetallic phase will be presented
elsewhere.
We first analyze the simplest particle-hole symmetric

model, when m1 ¼ m2 ¼ m and Γ1 ¼ Γ2 ¼ Γ. In this case,
ΓA ¼ Γ, ΓD ¼ 0, and the LK effective mass and the Dingle
exponent are

M ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2=ð4Γ2Þ

p ; D ¼ 2mπ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 þ δ2=4

q
: ð11Þ

For a small scattering rate Γ ≪ δ, they reduce to M ∼
2mΓ=δ and D ∼mπδ. Decreasing the damping rate Γ leads
to a smaller LK effective mass, and the Dingle exponent
remains a constant controlled by the band gap.
The LK effective mass reflects the density of states inside

the gap, since the finite temperature effect is a thermal
sampling of the spectral function through the convolution.
Therefore, it is not a coincidence that Eqs. (5) and (9) look
similar. Indeed, the zero-field density of states inside the
gap is Aðω ¼ 0Þ ¼ 2mΓ=δ ¼ M, which is exactly the LK
effective mass.
In the general asymmetric cases m1 ≠ m2 and Γ1 ≠

Γ2 ≪ δðkFÞ, the LK effective mass can vary in a wide range

(a) (b)

(c)

FIG. 3. (a) Real part of the Landau level spectrum Re½E↓
n;�� as a

function of magnetic field, with the same model in Fig. 2(a). The
s ¼ ↑ sector is similar. (b) Same as (a) but with the same model as
Fig. 2(b). (c) Exact numerics of spectral function Aðω ¼ 0Þ as a
function of 1=B and B (inset) with the model in (a). Here, both
spin sectors are taken into account. The unit for AðωÞ is m2.
m1 ¼ me is the free electron mass, and the hybridization
gap is δðkFÞ ¼ 2 meV. The resulting indirect band gap is δ ¼
0.56 meV, and the oscillation frequency is F ¼ 800 T.
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between m1 and m2 with proper choices of δ and ΓA.
The Dingle exponent remains a constant controlled by the
band gap. This is opposite that in normal metals, when
the scattering rate affects not the LK effective mass but the
Dingle factor.
As a concrete example, we present the quantum oscil-

lation of the same model in Fig. 2(a). The density of states
as a function of 1=B is shown in Fig. 3(c). Since ΓD ≠ 0,
the oscillation component associated with the larger Dingle
factor, whose LK effective mass is M ¼ 8.5me, becomes
dominant [40] between m1 and m2.
We note that the band edge oscillation in the absence of the

scattering rate is also reported in Ref. [11]. Contrary to our
theory, in that case, the quantum oscillation comes from
thermally excited occupation of Landau levels above thegap;
hence, theoscillation amplitudevanishes at zero temperature.
Similar LK behavior of oscillation of thermodynamic
observables in an insulator was also reported in a recent
numerical study [14], which is consistent with our result.
Both the LK effective mass and the Dingle factor provide

testable predictions of our theory. The parameters in our
analysis—the two scattering rates—can be extracted from
other measurements on an in-gap density of states and
ARPES spectral function. The oscillation of density of
states inside the gap naturally leads to magnetic suscep-
tibility oscillation, i.e., the de Haas–van Alphen effect. The
in-gap states may also contribute to the quantum oscillation
in resistivity, and we leave a detailed study for future work.
We hope the results of this Letter can help others under-
stand quantum oscillations in Kondo insulators and moti-
vate further study of quantum oscillations from in-gap
states in small-gap insulators.
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